JWT, Using a dynamic secret key stored in DB - authentication

I need some advice about future pitfalls and problems if I go forward with below approach.
I am using JWT and I need to expire all previous tokens of a user when he/she changes his/her password.
The approach I took to make a unique secret key for each user is concatenation my secret key and user password (config.jwtSecretKey + user.password) to generate a dynamic secret key.
Once the user changes his/her password the secret key will change and hence all previous tokens will be invalid.
Things are working fine but to validate each token I need a DB call to get the password.
Please suggest how can I improve this or what is the right way to do the same.

Your approach is quite good as it's to KISSy
The database query can be reduced by using some in-memory cache of your dynamic secret key.
Also, you can change the dynamic key from password hash to some random hash to reduce conflicts. It will reduce a lot of security threats.

Related

How to store encryption key?

I look out many password managers like keeper, 1password, secret-in and I am following secret-in password manager to create my own project and trying to add same features, but got stuck at storing the data of users like his/her secrets, payment secrets in encrypted form. I read encryption model of keeper here but still didn't understand. Where to store a server side encryption key?
I have some data that is symmetrically encrypted with a single key in my database. Rather than hard coding it into my code, I am looking for a safer way to store the encryption key. Where can I safely store it?
The approach here is quite simple.
You only send encrypted data to the server for storage/backup.
The encrypted data received doesn't come with a key.
You need to ensure all encryption and decryption occurs locally on the users device. Thus the user needs to supply the key.
Users aren't good at providing high quality key material, so instead, require the user to provide a password, take that password and pass it through a hash-based key derivation function with parameters that make the function slow (high ops, high mem requirements). An algorithm like pbkdf2 with a strong PRF like HMAC-SHA-2 should be sufficient.
Update:
To answer your specific questions, you need to perform the following steps, you will need to use a cryptographic library that supports key derivation from password and symmetric encryption, like libsodium.
request password from user on first use
run this password through key derivation to derive a key from it: https://libsodium.gitbook.io/doc/key_derivation
execute encryption of user data with key: https://libsodium.gitbook.io/doc/secret-key_cryptography
destroy the key and send data to server for backup

JWT - per user signing key

In my project there's a requirement to invalidate all jwt tokens of a user when the user changes his password. I was thinking of giving each user a different signing key, and simply reset the key when password is changed. Then I googled around and found Redis is a good place to store those per-user keys. Everything seems to work just fine.
But there one thing I cannot get my head around. Since it has to hit Redis once per request, is it any different than issuing the user an opaque token instead of JWT, and store the token -> JWT payload mapping in Redis?Isn't that defeats the purpose of using JWT?
To invalidate tokens you need to revoke them. OAuth spec also does not require getting secret key from remote server every time you need to validate JWT (as you said it kind of defeats the purpose). The key can be stored locally at resource site.
You have two options here:
1) Introspect the JWT token from resource side against OAuth server every time it validates it. Seems like overkill to me. The best approach is to give short expiration time to JWT token and let the already issued tokens to just expire.
2) Have the resource store the secret key locally and when it fails to validate go and get the key and re-validate it again.
From the point of view of invalidating the token, there's no particular need to store the JWT in Redis - anything that you can check and later invalidate should do the trick.
That said, presumably you're using a JWT for other reasons. For example, it's what the AuthN/Identity service provides. Or perhaps you use it to store claims or other metadata that you validate as part of the AuthN/AuthZ logic. In that case, since it's handy, storing the JWT seems very reasonable.

Storing API keys on server

I have a service where users each have an API key. I need to store the keys so that they can be used to validate API requests.
If I store the keys in plaintext in my database, I'm worried about the scenario of someone getting access to the db, grabbing all the plaintext api keys, then using them to impersonate others (there will likely be bigger problems if someone got access to the db, though).
This is similar to storing user passwords, where you just store the hash and validate using that - however most APIs let you view your API keys, which means they need to be stored in some recoverable way.
Is there a best practice for this?
The threat that someone gets the database and gets the keys means they can use the api keys to access the data in the database, which they already have, so no win there.
The threat that someone can access the database, get the passwords, means they can reuse those passwords on other web sites with the same user name because people tend to reuse their passwords.
Another reason having passwords in the clear or easily reversable is someone in your company could get a hold of the passwords, and start to do bad stuff acting as the user. Which IS a risk you might have if your API keys are in the clear.
Typically, HMAC is a solution for cryptographically computing a secure value from a single secret key, and some public value.
Have a look at HMAC. With HMAC, you can load a secret key into memory with the app (config file, read off of amazon KMS, typed in on app start, or however you want to get that secret key there).
In the database, store a token. Token = UUID() for example. The token should be unique to the user, the token could be versioned in case you need to regenerate, and the token could be random (like UUID). The token is not secret.
The API key is computed using the secret key (SK) and user token (UT) as follows:
API_SECRET = HMAC(SK, UT)
Then distribute that UT (More commonly called API_KEY) and API_SECRET to the user, and when the user tries to connect, you compute the API_SECRET:
Get user record from database (you're probably already asking the user to provide their username)
Compute the API_SECRET from the UT in the database:
API_SECRET_DB = HMAC(SK, UT)
Compare the computed API_SECRET_DB to the one provided in the request:
if (API_SECRET_DB == API_SECRET_FROM_REQUEST){
//login user
}
Bottom line, you only protect the Secret Key, and not every single credential.
I did an update to some library written in PHP which made it using an Impersonate Protection Algorithm (IPA). that lead to not saving the Token itself inside a database.
For more info check this https://github.com/vzool/api-hmac-guard
Hope it helps, Thanks

VB.Net Password Hashing practices

I'm trying to secure a website that is being moved to a public server soon. I've just finished adding the password hashing functions to all of my login scripts. I'm using FormsAuthentication.HashPasswordForStoringInConfigFile(pw, method) to do so. I have a question about the process I'm using and whether or not it's secure for a web server:
Password is sent in plain text over HTTPS to the server
The server looks in the Users table to find the user's Salt (several random characters) and their hashed and salted stored password
The plain text password is appended with the Salt
The new string is hashed using the above function
The newly hashed version is compared to the stored version
If equal, login is allowed
If not equal, the login attempt is logged in Session variables, up to 3 times before locking out the user's machine from accessing the login page until an admin verifies IP address and unlocks.
Does this look about right? I just don't see how the salt is effective in this method... Anyway, all I've done is add a salt and hash. Is this considered Encryption? Or am I missing a step? I remember reading that hashing algorithms like SHA1 and MD5 are not encyption algorithms, so what else needs to be done?
That is correct. The salt is used to prevent rainbow table attacks where a dictionary of common works hashed with MD5 is used to try to gain entry. Using the salt ensures that even if they had an MD5 hash of the word, it wouldn't work because they don't know the salt.
The MD5 algorithm is a 1 way hash algorithm, and not an encryption value. The difference is, once you've hashed the value, there is no way to get back to the original value. Encryption allows you to decrypt the data and get back the original value. So you are correct, they are not the same, and your passwords are not encrypted, they are hashed. This means that if someone forgets their password, you cannot send it to them. You have to provide a way for them to reset their password instead. This also means that anyone with access to the database would not have access to raw passwords. Which is good because a lot of people use the same password everywhere, and if you had access to a large list of usernames and passwords, someone could decide to start trying to log into bank / credit card websites.
What you are doing is a recommended practice.
You shouldn't be storing the retry count in the session - an attacker could simply discard their session cookie after each attempt, allowing them to retry as many times as they wish. Instead, store it against the user record.

Suggestions on storing passwords in database

Here's the situation - its a bit different from the other database/password questions on StackOverflow.com
I've got two sets of users. One are the "primary" users. The others are the "secondary" users. Every one has a login/password to my site (say mysite.com - that isn't important).
Background: Primary users have access to a third site (say www.something.com/PrimaryUser1). Every secondary user "belongs" to a primary user and wants access to a subpart of that other site (say www.something.com/PrimaryUser1/SecondaryUser1).
At mysite.com, the primary users have to provide their credentials to me which they use to access www.something.com/PrimaryUser1, and they specify which "subparts" the secondary users of their choice get get access to.
Mysite.com helps manage the sub-access of the secondary users to the primary user's site. The secondary users can't "see" their primary user's password, but through my site, they can access the "subparts" of the other site - but ONLY to their restricted subpart.
In a crude way, I'm implementing OAuth (or something like that).
The question here is - how should I be storing the primary user's credentials to the other site? The key point here is that mysite.com uses these credentials to provide access to the secondary users, so it MUST be able to read it. However, I want to store it in such a way, that the primary users are reassured that I (as the site owner) cannot read their credentials.
I suppose this is more of a theoretical approach question. Is there anything in the world of cryptography that can help me with this?
Text added:
Since most ppl are completely missing the question, here's attempt #2 at explaining it.
PrimaryUser1 has a username/password to www.something.com/PrimaryUser1Site
He wishes to give sub-access to two people- SecondaryUser1 and SecondaryUser2 to the folders- www.something.com/PrimaryUser1Site/SecondaryUser1 and www.something.com/PrimaryUser1Site/SecondaryUser2
Mysite.com takes care of this sub-user management, so PrimaryUser1 goes there and provides his credentials to Mysite.com. MySite.com internally uses the credentials provided by PrimaryUser1 to give subusers limited access. Now, SecondaryUser1 and SecondaryUser2 can access their respective folders on www.something.com/PrimaryUser1Site through the MySite.com
NOW, the question arises, how should I store the credentials that PrimaryUser1 has provided?
First rule: Never, ever store passwords!
Second rule: Calculate a hash over password, with additional salt, and store this in your database.
Third rule: A username (uppercased) could be used as salt, but preferably add a little more as salt! (Some additional text, preferably something long.)
Fourth rule: It doesn't matter how secure a hashing algorithm is, they will all be hacked sooner or later. All it takes is time!
Fifth rule: The security of your site depends on the value of what's behind it. The more value the content has, the more likely that you'll be attacked!
Sixth rule: You will discover, sooner or later, that your site is hacked but not through a hacked password, but through a loophole somewhere else in your code. The biggest risk is expecting your site is secure now you've implemented some strong security.
Seventh rule: All security can be broken, all sites can get hacked, all your secrets can be discovered, if only people are willing to invest enough time to do so.
Security is an illusion but as long as no one breaks it, you can continue to dream on! Always be prepared for rough awakenings that will require you to rebuild your illusion again. (In other words, make regular backups! (Preferably daily.) Don't overwrite the backups of the last week and make sure you keep at least one backup of every week, just in case you discover your site was hacked months ago and all your backups ever since are infected!
Now, if you really need to store passwords, use a hash over username plus password. Then hash again with hash plus salt! Better yet, create a list of salts (just list of words) and whenever a new user account is created, pick a random salt word to use to hash his username plus password. Store the index of the salt with the user account so you know which one to use whenever he logs on again.
And:
Eight rule: Always use HTTPS! It's not as secure as most people thing but it does give a feeling of security to your users!Since you've added text, I'll add more answer.
Since you want user1 to grant temporary access to user 2, you'll need a secondary user table. (Or expand the user table with a parent user ID. Also add a timestamp to keep track of the account age. User 1 can create the credentials and this is done in the normal way. Just store a hash with combined username and salt. In this case, use the username of user 1 as additional salt! Just make sure you'll disable the user 2 account when user 1 logs off or when a certain amount of time has gone by. And allow user 1 to enable all accounts again that he created, so they can re-use an account instead of having to create new ones all the time.
Security isn't a matter that depend on primary or secondary users. In general, treat them the same way! Secondary users have an added bonus that you can use the primary account as additional salt. The rest of it has nothing to do with authentication any more. It's authorization that you're dealing with. And while authentication and authorization have a strong relationship, be aware that you should treat them as two different, stand-alone techniques.
When user 1 logs on, he's granted access to the primary site. When he grants access to user 2, user 2 gets a reduced set of roles. But this has nothing to do with storing user names or passwords. You just have an user-ID which happens to be member of certain roles, or groups. Or not, but those would be inaccessible.
They're both just users, one with more rights than the other.
It depends on the kind of authentication your primary site and the secondary site agree on. Is it forms authentication, HTTP Basic or HTTP Digest? If is forms or basic then you have no choice, you must store the password, so your only choice is to encrypt it. You cannot store a password hash as you must present the clear text during authentication for both forms and HTTP Basic. The problems that arise from storing the encrypted password are due to either incorrect use of cryptography (ie. you don't use an IV or salt or you don't use correctly a stream cipher), but more importantly you'll have key management problems (where to store the key used to encrypt the passwords and how to access it from a non-interactive service/demon).
If the 3rd party site accepts HTTP Digest then you're in better luck, you can store the HA1 hash part of the Digest hash (ie. MD5 of username:realm:password) because you can construct the Digest response starting straight from HA1.
I did not address how the user provision the secondary credentials (ie. how you get the secondary site username and password n the first place), I assume you have secured a protected channel (ie. HTTPS from client to your primary site).
BTW this assumes that the authentication occurs between your primary and secondary site and the secondary site content is tunneled through an HTTP request made to the primary site. If that's not the case and the secondary site is actually accessed straight from the browser, then the secondary site must support some sort of pre-authenticated token based authorization of third parties like OAuth. Relying on credential authentication and storing the credentials on the primary site when the credentials are actually needed by the browser has so many problems is not even worth talking about.
Have you thought about accepting OpenID like Stack Overflow does? That way you are not responsible for storing passwords at all.
There is only one way to do this, and it is probably too burdomesome for the users.
You could encrypt the users password with a public/private key, the user keeps their key so the password can be unencrypted only when the key is submitted back to your server. The only way to make this simple would to be to have some web browser plugins that auto submit the information.
And either way, you could always packet sniff the communication to/from the server so its still mostly pointless.
there has got be a better way to explain this :(
but if you just want to know how to store the passwords safely do this:
username:john, password:pass
key = '!!#ijs09789**&*';
md5(username.password.key);
when they login just check to see if md5(username.password.key) = is equal to the one in the db - you can also use sha1 and or any other encryption method.
http://us.php.net/md5 & http://us.php.net/sha1
Never store passwords in a database but store a salted and hashed version of every password.
Check this article if this is chinese for you.
If you want to store the password yourself the best apporach is to use a one-way hashing algorithm such as MD5 or SHA-1. The advantage of this approach is that you cannot derive the password from the hashed value.
Precisely which algorithm you choose depends the precise products you are using. Some front-end tools offer these functions, as do some database products. Otherwise you'll need a third-party library.
Edit
Secondary users ought to have their own passowrds. Why wouldn't they?
You're making it too complex. You need to stop trying to mix authentication and authorization.
What you want to do is establish credentials for everyone, not worrying at this point if they are "primary" or "secondary" users. Then on the main site, where you manage the users and the primary/secondary relationships, you can do the logic of which users are primary or secondary and store all that stuff in a table. You grant or deny whatever rights and sub-rights you wish to each secondary user whenever the primary users update their relationships with them. When they're done, you finally need to replicate the appropriate user credentials from the main site out to the secondary site(s).
Then when a secondary user wants to head to any site in your farm, they authenticate themselves only as themselves - they never impersonate the primary user! And they have only the rights you granted them when the primary users gave them "secondary" status.
--
OK, since you shot that solution down in the comment, consider this:
First, I doubt anything will be truly secure. You can always recover the secret if you monitor the users' activity.
Now, this is completely off the cuff, and I haven't cryptanalyzed it, but check into what is called a secret sharing scheme. Store the "effective" or "real" main-site primary user password as the shared secret. Use the salted hash of the password given by the primary user as one secret. Use the salted hash of the password given by the first secondary user as another secret, and so on for each additional secondary user. Don't store the salted hashes! Just store the salt and the protected shared secret.
When a user enters their password, you retrieve the protected shared secret, use the salt and hash of their password to produce the salted hash, decrypt the protected shared secret, and now you've got the original primary user password.