I training maskrcnn ,use tf-1.2 can train, but I use tf-1.5 it not training
The error is as follows:
Caused by op u'pyramid_1/AssignGTBoxes/Where_6', defined at:
File "/home/zhouzd2/letrain/applications/letrain.py", line 349, in <module>
tf.app.run()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", line 124, in run
_sys.exit(main(argv))
File "/home/zhouzd2/letrain/applications/letrain.py", line 346, in main
LeTrain().model_train(user_mode)
File "/home/zhouzd2/letrain/platform/base_train.py", line 1228, in model_train
cluster=self.cluster_spec)
File "/home/zhouzd2/letrain/platform/deployment/model_deploy.py", line 226, in create_clones
outputs, feed_ops,verify_model_loss = model_fn(*args, **kwargs)
File "/home/zhouzd2/letrain/platform/base_train.py", line 1195, in clone_fn
model_loss, end_points, feed_ops = network_fn(data_direct, data_batch, int_network_fn)
File "/home/zhouzd2/letrain/applications/letrain.py", line 214, in get_loss
FLAGS.batch_size)
File "/home/zhouzd2/letrain/applications/fmrcnn/get_fmrcnn_loss.py", line 23, in model_fn
loss_weights=[0.2, 0.2, 1.0, 0.2, 1.0])
File "/home/zhouzd2/letrain/applications/fmrcnn/libs/nets/pyramid_network.py", line 580, in build
is_training=is_training, gt_boxes=gt_boxes)
File "/home/zhouzd2/letrain/applications/fmrcnn/libs/nets/pyramid_network.py", line 263, in build_heads
assign_boxes(rois, [rois, batch_inds], [2, 3, 4, 5])
File "/home/zhouzd2/letrain/applications/fmrcnn/libs/layers/wrapper.py", line 173, in assign_boxes
inds = tf.where(tf.equal(assigned_layers, l))
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/array_ops.py", line 2538, in where
return gen_array_ops.where(condition=condition, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_array_ops.py", line 6087, in where
"Where", input=condition, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 3160, in create_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1625, in __init__
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
InternalError (see above for traceback): WhereOp: Could not launch cub::DeviceReduce::Sum to count number of true / nonzero indices. temp_storage_bytes: 1, status: no kernel image is available for execution on the device
[[Node: pyramid_1/AssignGTBoxes/Where_6 = Where[T=DT_BOOL, _device="/job:worker/replica:0/task:0/device:GPU:0"](pyramid_1/AssignGTBoxes/Equal_6_S9493)]]
[[Node: pyramid_1/AssignGTBoxes/Reshape_8_G1028 = _Recv[client_terminated=false, recv_device="/job:worker/replica:0/task:0/device:CPU:0", send_device="/job:worker/replica:0/task:0/device:GPU:0", send_device_incarnation=5407481677180697062, tensor_name="edge_1349_pyramid_1/AssignGTBoxes/Reshape_8", tensor_type=DT_INT64, _device="/job:worker/replica:0/task:0/device:CPU:0"]()]]
No problem when loading calculation graphs, error is reported in sess.run()。
Does anyone know how to solve this problem? Or does anyone know what function can replace tf.where?
Thank you!
If you are using Visual Studio:
Right click on the project > Properies > Cuda C/C++ > Device
and add the following to Code Generation field
compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;
Related
I'm trying debug my trained Faster R-CNN model using Tensorflow Object Detection API and I want to visualize the proposal regions of RPN on an image. Can anyone tell me how to do it?
I found a post here but it hasn't been answered. I tried to export the model using exporter_main_v2.py with only the RPN head as said here and this is the massage when I deleted the second_stage.
Traceback (most recent call last):
File "exporter_main_v2.py", line 165, in <module>
app.run(main)
File "E:\Anaconda\envs\TFOD\lib\site-packages\absl\app.py", line 312, in run
_run_main(main, args)
File "E:\Anaconda\envs\TFOD\lib\site-packages\absl\app.py", line 258, in _run_main
sys.exit(main(argv))
File "exporter_main_v2.py", line 158, in main
exporter_lib_v2.export_inference_graph(
File "E:\Anaconda\envs\TFOD\lib\site-packages\object_detection\exporter_lib_v2.py", line 245, in export_inference_graph
detection_model = INPUT_BUILDER_UTIL_MAP['model_build'](
File "E:\Anaconda\envs\TFOD\lib\site-packages\object_detection\builders\model_builder.py", line 1226, in build
return build_func(getattr(model_config, meta_architecture), is_training,
File "E:\Anaconda\envs\TFOD\lib\site-packages\object_detection\builders\model_builder.py", line 665, in _build_faster_rcnn_model
second_stage_box_predictor = box_predictor_builder.build_keras(
File "E:\Anaconda\envs\TFOD\lib\site-packages\object_detection\builders\box_predictor_builder.py", line 991, in build_keras
raise ValueError(
ValueError: Unknown box predictor for Keras: None
I tried again to export the model without deleting the second_stage. And this is the message I got
INFO:tensorflow:depth of additional conv before box predictor: 0
I0802 20:55:13.930429 1996 convolutional_keras_box_predictor.py:153] depth of additional conv before box predictor: 0
Traceback (most recent call last):
File "exporter_main_v2.py", line 165, in <module>
app.run(main)
File "E:\Anaconda\envs\TFOD\lib\site-packages\absl\app.py", line 312, in run
_run_main(main, args)
File "E:\Anaconda\envs\TFOD\lib\site-packages\absl\app.py", line 258, in _run_main
sys.exit(main(argv))
File "exporter_main_v2.py", line 158, in main
exporter_lib_v2.export_inference_graph(
File "E:\Anaconda\envs\TFOD\lib\site-packages\object_detection\exporter_lib_v2.py", line 271, in export_inference_graph
concrete_function = detection_module.__call__.get_concrete_function()
File "E:\Anaconda\envs\TFOD\lib\site-packages\tensorflow\python\eager\def_function.py", line 1299, in get_concrete_function
concrete = self._get_concrete_function_garbage_collected(*args, **kwargs)
File "E:\Anaconda\envs\TFOD\lib\site-packages\tensorflow\python\eager\def_function.py", line 1205, in _get_concrete_function_garbage_collected
self._initialize(args, kwargs, add_initializers_to=initializers)
File "E:\Anaconda\envs\TFOD\lib\site-packages\tensorflow\python\eager\def_function.py", line 725, in _initialize
self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
File "E:\Anaconda\envs\TFOD\lib\site-packages\tensorflow\python\eager\function.py", line 2969, in _get_concrete_function_internal_garbage_collected
graph_function, _ = self._maybe_define_function(args, kwargs)
File "E:\Anaconda\envs\TFOD\lib\site-packages\tensorflow\python\eager\function.py", line 3361, in _maybe_define_function
graph_function = self._create_graph_function(args, kwargs)
File "E:\Anaconda\envs\TFOD\lib\site-packages\tensorflow\python\eager\function.py", line 3196, in _create_graph_function
func_graph_module.func_graph_from_py_func(
File "E:\Anaconda\envs\TFOD\lib\site-packages\tensorflow\python\framework\func_graph.py", line 990, in func_graph_from_py_func
func_outputs = python_func(*func_args, **func_kwargs)
File "E:\Anaconda\envs\TFOD\lib\site-packages\tensorflow\python\eager\def_function.py", line 634, in wrapped_fn
out = weak_wrapped_fn().__wrapped__(*args, **kwds)
File "E:\Anaconda\envs\TFOD\lib\site-packages\tensorflow\python\framework\func_graph.py", line 977, in wrapper
raise e.ag_error_metadata.to_exception(e)
tensorflow.python.autograph.pyct.error_utils.KeyError: in user code:
E:\Anaconda\envs\TFOD\lib\site-packages\object_detection\exporter_lib_v2.py:163 call_func *
return self._run_inference_on_images(images, true_shapes, **kwargs)
E:\Anaconda\envs\TFOD\lib\site-packages\object_detection\exporter_lib_v2.py:129 _run_inference_on_images *
detections[classes_field] = (
KeyError: 'detection_classes'
Found the solution!
In the config file add number_of_stages: 1
Instead of using exporter_main_v2.pyI write code that builds the model from the checkpoint file
# Load pipeline config and build a detection model
configs = config_util.get_configs_from_pipeline_file(path_to_config)
model_config = configs['model']
detection_model = model_builder.build(model_config=model_config, is_training=False)
# Restore checkpoint
ckpt = tf.compat.v2.train.Checkpoint(model=detection_model)
ckpt.restore(os.path.join(path_to_ckpt, 'ckpt-0')).expect_partial()
Then I feed the image I need to inspect to the model, then I use object_detection.utils.visualization_utils.visualize_boxes_and_labels_on_image_array to inspect the boxes
I am getting this weird error when trying to train a sequence to sequence model in tensorflow. The sequence to sequence model is a video captioning system. I have encoded the frames of the videos in sequence features of the SequenceExampleProto. After I prefetch the features containing the list of jpeg encoded strings, I decode them using the following function:
video = tf.map_fn(lambda x: tf.image.decode_jpeg(x, channels=3), encoded_video, dtype=tf.uint8)
The model compiles but during training time, I'm getting the following error which is caused by this code. The error says that the TensorArray is zero, whereas here the TensorArray should not be zero. Any help is appreciated:
tensorflow.python.framework.errors_impl.UnimplementedError: TensorArray has size zero, but element shape [?,?,3] is not fully defined. Currently only static shapes are supported when packing zero-size TensorArrays.
[[Node: input_fn/decode/map/TensorArrayStack/TensorArrayGatherV3 = TensorArrayGatherV3[_class=["loc:#input_fn/decode/map/TensorArray_1"], dtype=DT_UINT8, element_shape=[?,?,3], _device="/job:localhost/replica:0/task:0/cpu:0"](input_fn/decode/map/TensorArray_1, input_fn/decode/map/TensorArrayStack/range, input_fn/decode/map/while/Exit_1/_479)]]
Caused by op u'input_fn/decode/map/TensorArrayStack/TensorArrayGatherV3', defined at:
File "/usr/lib/python2.7/runpy.py", line 162, in _run_module_as_main
"__main__", fname, loader, pkg_name)
File "/usr/lib/python2.7/runpy.py", line 72, in _run_code
exec code in run_globals
File "/home/ubuntu/ASLNet/seq2seq/bin/train.py", line 277, in <module>
tf.app.run()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", line 48, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "/home/ubuntu/ASLNet/seq2seq/bin/train.py", line 272, in main
schedule=FLAGS.schedule)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/learn_runner.py", line 111, in run
return _execute_schedule(experiment, schedule)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/learn_runner.py", line 46, in _execute_schedule
return task()
File "seq2seq/contrib/experiment.py", line 104, in continuous_train_and_eval
monitors=self._train_monitors)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/util/deprecation.py", line 281, in new_func
return func(*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 430, in fit
loss = self._train_model(input_fn=input_fn, hooks=hooks)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 925, in _train_model
features, labels = input_fn()
File "seq2seq/training/utils.py", line 274, in input_fn
frame_format="jpeg")
File "seq2seq/training/utils.py", line 365, in process_video
video = tf.map_fn(lambda x: tf.image.decode_jpeg(x, channels=3), encoded_video, dtype=tf.uint8)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/functional_ops.py", line 390, in map_fn
results_flat = [r.stack() for r in r_a]
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/tensor_array_ops.py", line 301, in stack
return self.gather(math_ops.range(0, self.size()), name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/tensor_array_ops.py", line 328, in gather
element_shape=element_shape)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_data_flow_ops.py", line 2244, in _tensor_array_gather_v3
element_shape=element_shape, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 768, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2336, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1228, in __init__
self._traceback = _extract_stack()
UnimplementedError (see above for traceback): TensorArray has size zero, but element shape [?,?,3] is not fully defined. Currently only static shapes are supported when packing zero-size TensorArrays.
[[Node: input_fn/decode/map/TensorArrayStack/TensorArrayGatherV3 = TensorArrayGatherV3[_class=["loc:#input_fn/decode/map/TensorArray_1"], dtype=DT_UINT8, element_shape=[?,?,3], _device="/job:localhost/replica:0/task:0/cpu:0"](input_fn/decode/map/TensorArray_1, input_fn/decode/map/TensorArrayStack/range, input_fn/decode/map/while/Exit_1/_479)]]
Fixed. I followed the suggestion from tensorflow map_fn TensorArray has inconsistent shapes and implemented the following:
with tf.name_scope("decode", values=[encoded_video]):
input_jpeg_strings = tf.TensorArray(tf.string, video_length)
input_jpeg_strings = input_jpeg_strings.unstack(encoded_video)
init_array = tf.TensorArray(tf.float32, size=video_length)
def cond(i, ta):
return tf.less(i, video_length)
def body(i, ta):
image = input_jpeg_strings.read(i)
image = tf.image.decode_jpeg(image, 3, name='decode_image')
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
assert (resize_height > 0) == (resize_width > 0)
image = tf.image.resize_images(image, size=[resize_height, resize_width], method=tf.image.ResizeMethod.BILINEAR)
return i + 1, ta.write(i, image)
_, input_image = tf.while_loop(cond, body, [0, init_array])
I'm using the following code to log accuracy as the validation measure (TensorFlow 0.10):
validation_metrics = {"accuracy": tf.contrib.metrics.streaming_accuracy}
validation_monitor = tf.contrib.learn.monitors.ValidationMonitor(
input_fn=input_fn_eval,
every_n_steps=FLAGS.eval_every,
# metrics=validation_metrics,
early_stopping_rounds=500,
early_stopping_metric="loss",
early_stopping_metric_minimize=True)
After running, in 'every_n_steps', I see the following lines in the output:
INFO:tensorflow:Validation (step 1000): loss = 1.04875, global_step = 900
The problem is that when 'metrics=validation_metrics' parameter uncomment in the above code, I get the following error in the validation phase:
INFO:tensorflow:Error reported to Coordinator: <type 'exceptions.TypeError'>, Input 'y' of 'Equal' Op has type int64 that does not match type float32 of argument 'x'.
E tensorflow/core/client/tensor_c_api.cc:485] Enqueue operation was cancelled
[[Node: read_batch_features_train/file_name_queue/file_name_queue_EnqueueMany = QueueEnqueueMany[Tcomponents=[DT_STRING], _class=["loc:#read_batch_features_train/file_name_queue"], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](read_batch_features_train/file_name_queue, read_batch_features_train/file_name_queue/RandomShuffle)]]
E tensorflow/core/client/tensor_c_api.cc:485] Enqueue operation was cancelled
[[Node: read_batch_features_train/random_shuffle_queue_EnqueueMany = QueueEnqueueMany[Tcomponents=[DT_STRING, DT_STRING], _class=["loc:#read_batch_features_train/random_shuffle_queue"], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](read_batch_features_train/random_shuffle_queue, read_batch_features_train/read/ReaderReadUpTo, read_batch_features_train/read/ReaderReadUpTo:1)]]
Traceback (most recent call last):
File "udc_train.py", line 74, in <module>
tf.app.run()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", line 30, in run
sys.exit(main(sys.argv))
File "udc_train.py", line 70, in main
estimator.fit(input_fn=input_fn_train, steps=None, monitors=[validation_monitor])
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 240, in fit
max_steps=max_steps)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 578, in _train_model
max_steps=max_steps)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/graph_actions.py", line 280, in _supervised_train
None)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/supervised_session.py", line 270, in run
run_metadata=run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/recoverable_session.py", line 54, in run
run_metadata=run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/coordinated_session.py", line 70, in run
self._coord.join(self._coordinated_threads_to_join)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/coordinator.py", line 357, in join
six.reraise(*self._exc_info_to_raise)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/coordinated_session.py", line 66, in run
return self._sess.run(*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/monitored_session.py", line 107, in run
induce_stop = monitor.step_end(monitors_step, monitor_outputs)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/monitors.py", line 396, in step_end
return self.every_n_step_end(step, output)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/monitors.py", line 687, in every_n_step_end
steps=self.eval_steps, metrics=self.metrics, name=self.name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 356, in evaluate
name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 630, in _evaluate_model
eval_dict = self._get_eval_ops(features, targets, metrics)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 877, in _get_eval_ops
result[name] = metric(predictions, targets)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/metrics/python/ops/metric_ops.py", line 432, in streaming_accuracy
is_correct = math_ops.to_float(math_ops.equal(predictions, labels))
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_math_ops.py", line 708, in equal
result = _op_def_lib.apply_op("Equal", x=x, y=y, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 468, in apply_op
inferred_from[input_arg.type_attr]))
TypeError: Input 'y' of 'Equal' Op has type int64 that does not match type float32 of argument 'x'.
This looks like a problem with your input_fn and your estimator, which are returning different types for the label.
I have a saved checkpoint generated by graph code in a regular non-distributed setup with the constraint with tf.device('/cpu:0'): (to force model params to reside on CPU instead of GPU).
Now I converted the same code/graph to a distributed setting following the guidelines in TF-Inception.
Now when I try to restore the checkpoint in distributed setup, I get device mismatch errors. Is there a way to override the requirements saved in the checkpoint file or something?
My new distributed code has the Saver and scopes defined as:
if FLAGS.job_name == 'worker':
with tf.device(tf.train.replica_device_setter(
worker_device="/job:worker/task:%d" % FLAGS.task_id,
cluster=cluster_spec)):
# ...same network-graph code... #
restorer = tf.train.Saver()
with tf.Session() as sess:
restorer.restore(sess, 'ResNet-L50.ckpt')
My cluster has one ps and one worker, and both are on localhost. Error line:
tensorflow.python.framework.errors.InvalidArgumentError: Cannot assign a device to node 'save/restore_slice_268/shape_and_slice': Could not satisfy explicit device specification '/job:ps/task:0/device:CPU:0' because no devices matching that specification are registered in this process; available devices: /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/gpu:0
[[Node: save/restore_slice_268/shape_and_slice = Const[dtype=DT_STRING, value=Tensor<type: string shape: [] values: >, _device="/job:ps/task:0/device:CPU:0"]()]]
Full error trace:
I tensorflow/core/common_runtime/gpu/gpu_device.cc:756] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Quadro K2200, pci bus id: 0000:01:00.0)
Traceback (most recent call last):
File "dlaunch.py", line 85, in <module>
tf.app.run() # (tf.app.flags parsed here)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", line 30, in run
sys.exit(main(sys.argv))
File "dlaunch.py", line 81, in main
dtrainer.train(server.target, cluster_spec)
File "/home/muneeb/parkingtf/dtrainer.py", line 88, in train
restorer.restore(sess, 'ResNet-L50.ckpt')
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 1103, in restore
{self.saver_def.filename_tensor_name: save_path})
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 328, in run
run_metadata_ptr)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 563, in _run
feed_dict_string, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 636, in _do_run
target_list, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 658, in _do_call
e.code)
tensorflow.python.framework.errors.InvalidArgumentError: Cannot assign a device to node 'save/restore_slice_268/shape_and_slice': Could not satisfy explicit device specification '/job:ps/task:0/device:CPU:0' because no devices matching that specification are registered in this process; available devices: /job:localhost/replica:0/task:0/cpu:0, /job:localhost/replica:0/task:0/gpu:0
[[Node: save/restore_slice_268/shape_and_slice = Const[dtype=DT_STRING, value=Tensor<type: string shape: [] values: >, _device="/job:ps/task:0/device:CPU:0"]()]]
Caused by op u'save/restore_slice_268/shape_and_slice', defined at:
File "dlaunch.py", line 85, in <module>
tf.app.run() # (tf.app.flags parsed here)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", line 30, in run
sys.exit(main(sys.argv))
File "dlaunch.py", line 81, in main
dtrainer.train(server.target, cluster_spec)
File "/home/muneeb/parkingtf/dtrainer.py", line 86, in train
restorer = tf.train.Saver()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 845, in __init__
restore_sequentially=restore_sequentially)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 515, in build
filename_tensor, vars_to_save, restore_sequentially, reshape)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 271, in _AddRestoreOps
values = self.restore_op(filename_tensor, vs, preferred_shard)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 186, in restore_op
preferred_shard=preferred_shard)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/io_ops.py", line 201, in _restore_slice
preferred_shard, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_io_ops.py", line 271, in _restore_slice
preferred_shard=preferred_shard, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/op_def_library.py", line 444, in apply_op
as_ref=input_arg.is_ref)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 566, in convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/constant_op.py", line 179, in _constant_tensor_conversion_function
return constant(v, dtype=dtype, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/constant_op.py", line 166, in constant
attrs={"value": tensor_value, "dtype": dtype_value}, name=name).outputs[0]
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2162, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1161, in __init__
self._traceback = _extract_stack()
The following line:
with tf.Session() as sess:
...is responsible for the error. Passing no arguments to tf.Session() creates an in-process session that can only use devices on the local machine. To work in the distributed mode, you should have something like:
# Assuming you created `server = tf.train.Server(...)` earlier.
with tf.Session(server.target) as sess:
...or, if you are connecting to a different process:
# Assuming your server is in a different process.
with tf.Session("grpc://..."):
Note that the devices are not stored in the checkpoint file, but they are being added by the tf.train.replica_device_setter(). Device configuration is a bit tricky right now, and it's something that we're working to simplify.
I am trying to run the retrain.py script (available here: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/image_retraining/retrain.py). I have noticed that the part starting with the line 747 is executed on CPU when the default should be GPU. So, I have added the following line to force it to work on GPU:
`with tf.device("/gpu:0"):
(train_step, cross_entropy, bottleneck_input, ground_truth_input, final_tensor) = add_final_training_ops(len(image_lists.keys()),
FLAGS.final_tensor_name,
bottleneck_tensor)`
It causes the following error:
'tensorflow.python.framework.errors.InvalidArgumentError: Cannot assign a device to node 'gradients/Mean_grad/Prod': Could not satisfy explicit device specification '/device:GPU:0' because no supported kernel for GPU devices is available
[[Node: gradients/Mean_grad/Prod = Prod[T=DT_INT32, keep_dims=false, _device="/device:GPU:0"](gradients/Mean_grad/Shape_2, gradients/Mean_grad/range_1)]]
Caused by op u'gradients/Mean_grad/Prod', defined at:
File "retrain_tensorboard_pickle_mean.py", line 921, in <module>
tf.app.run()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", line 30, in run
sys.exit(main(sys.argv))
File "retrain_tensorboard_pickle_mean.py", line 839, in main
(train_step, cross_entropy, bottleneck_input, ground_truth_input, label_ground_truth_input, final_tensor) = add_final_training_ops(len(image_lists.keys()), FLAGS.final_tensor_name, bottleneck_tensor)
File "retrain_tensorboard_pickle_mean.py", line 686, in add_final_training_ops
cross_entropy_mean)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/optimizer.py", line 190, in minimize
colocate_gradients_with_ops=colocate_gradients_with_ops)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/optimizer.py", line 241, in compute_gradients
colocate_gradients_with_ops=colocate_gradients_with_ops)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gradients.py", line 481, in gradients
in_grads = _AsList(grad_fn(op, *out_grads))
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/math_grad.py", line 91, in _MeanGrad
factor = (math_ops.reduce_prod(input_shape) //
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/math_ops.py", line 810, in reduce_prod
keep_dims, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_math_ops.py", line 1115, in _prod
keep_dims=keep_dims, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/op_def_library.py", line 655, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2146, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1154, in __init__
self._traceback = _extract_stack()
...which was originally created as op u'Mean', defined at:
File "retrain_tensorboard_pickle_mean.py", line 921, in <module>
tf.app.run()
[elided 1 identical lines from previous traceback]
File "retrain_tensorboard_pickle_mean.py", line 839, in main
(train_step, cross_entropy, bottleneck_input, ground_truth_input, label_ground_truth_input, final_tensor) = add_final_training_ops(len(image_lists.keys()), FLAGS.final_tensor_name, bottleneck_tensor)
File "retrain_tensorboard_pickle_mean.py", line 681, in add_final_training_ops
cross_entropy_mean = tf.reduce_mean(cross_entropy)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/math_ops.py", line 783, in reduce_mean
keep_dims, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_math_ops.py", line 973, in _mean
keep_dims=keep_dims, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/op_def_library.py", line 655, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2146, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1154, in __init__
self._traceback = _extract_stack()
I have found here that it might be a problem that mean is not implemented on GPU but on the other hand there is a commit on github which fixes counting mean on GPU.
Previous part, e.g. generating bottlenecks (line 744) runs perfectly on GPU, without even forcing it.
I would be grateful for any help!!
Justyna
This has now been fixed in b874e2c, nice catch