Suppose I have a matrix of N users, and each user is associated with a vector of words (translated to integers). So for example for N = 2 I'd have:
user 0 corresponds to words['20','56']
user 1 corresponds to words ['58','10','105']
So I have a list
user_words = [['20','56'],['58','10','105']]
Suppose further I created a 100-column embedding matrix (word_emb) for these words. I'd like to look up the (mean) embeddings of each of the user vectors and create a new Tensor, whose shape I would expect to be [2,100]. I tried doing this:
word_vec = []
for word_sequence_i in tf.map_fn(lambda x: x, user_words):
all_word_vecs = tf.nn.embedding_lookup(word_emb, word_sequence_i)
word_vec.append( tf.reduce_mean(all_word_vecs, 1))
But this gives me an error:
TypeError: `Tensor` objects are not iterable when eager execution is not enabled. To iterate over this tensor use `tf.map_fn`.
I thought I already was using tf.map_fn above! So what is Tensorflow complaining about? Is there even a way to do what I am trying to do?
Thanks so much!
tf.map_fn returns a Tensor object itself, which is a symbolic reference to a value that will be computed at Session.run() time. You can see this with type(tf.map_fn(lambda x: x, user_words)). So, it's the iteration implied in for word_sequence_i in tf.map_fn(...) that is generating the error.
Perhaps what you're looking for is something like:
all_word_vecs = tf.map_fn(lambda x: tf.nn.embedding_lookup(word_emb, x), user_words)
word_vec = tf.reduce_mean(all_word_vecs, axis=1)
On a related note, if this distinction between graph construction and execution is getting bothersome, you might want to give TensorFlow's eager execution a spin. See getting started and the programmer's guide.
Hope that helps.
Related
I have the following code:
shape = tf.shape(tensor, out_type=tf.int64, name='sparse_shape')
nelems = tf.size(tensor, out_type=tf.int64, name='num_elements')
indices = tf.transpose(
tf.unravel_index(tf.range(nelems, dtype=tf.int64), shape),
name='sparse_indices')
values = tf.reshape(tensor, [nelems], name='sparse_values')
This code snippet is simply transforming a dense tensor into a sparse tensor. However I found that the reshape op sometimes raises an error in runtime:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Input to reshape is a tensor with 906 values, but the requested shape has 1024
It's hard to write a simple demo to reproduce this bad case. So please understand that I cannot provide a reproducible demo.
But notice that my code is very simple. The reshape op is simply reshaping the tensor into a 1D tensor with the dimension size as the tensor's size, which is the number of elements of the tensor (illustrated in TensorFlow's doc). And in my mind, the number of elements here simply means the number of of values in the error message. Thus the above error should never appear.
I tried to use production of the shape as the target dimension size instead of tf.size but it was no use:
shape = tf.shape(tensor, out_type=tf.int64, name='sparse_shape')
# use production as the number of elements
nelems = tf.reduce_prod(shape, name='num_elements')
....
values = tf.reshape(tensor, [nelems], name='sparse_values')
So my question is, why is there a possibility that, for a certain tensor tensor, tf.size(tensor) or tf.shape(tensor) does not tell the actual number of elements of tensor? Can anyone remind if I have missed anything? Thanks.
I have figured out the problem on myself.
Problem:
In my project, the problem is that, tensor is produced by a third-party library. The library called tensor.set_shape([1024]) before returning tensor. While it can't ensure that there must be 1024 elements in tensor.
According to these codes, in TensorFlow's python frontend implementation, when the shape is fully determined, tf.shape and tf.size can go a fast way to get the result without really running the ShapeOp or SizeOp, and returning a constant tensor of the determined shape dimensions as the result.
As a result, in my case, the shape is obviously fully determined as [1024], so the code goes in the fast way and returned tf.constant([1024]). However the real shape of the Tensor object in the backend is [906].
Solution
According to the previously mentioned codes, we can see that tf.shape and tf.size actually calls shape_internal and size_internal defined in tensorflow.python.ops.array_ops. The latter functions takes one more argument optimize with default value True. And if optimize is false, the fast way will be ignored.
So the solution is to replace the tf.shape or tf.size with shape_internal or size_internal, and pass optimize=False.
# internal functions are not exposed by `tensorflow` root package
# so we have to import the `array_ops` package manualy
from tensorflow.python.ops import array_ops
....
shape = tf.shape(tensor, out_type=tf.int64, name='sparse_shape')
#nelems = tf.size(tensor, out_type=tf.int64, name='num_elements')
nelems = array_ops.size_internal(tensor, optimize=False, out_type=tf.int64, name='num_elements')
....
values = tf.reshape(tensor, [nelems], name='sparse_values')
I cannot see the difference between what I am doing and the working Google TFP example, whose structure I am following. What am I doing wrong/should I be doing differently?
[Setup: Win 10 Home 64-bit 20H2, Python 3.7, TF2.4.1, TFP 0.12.2, running in Jupyter Lab]
I have been building a model step by step following the example of TFP Probabilistic Layers Regression. The Case 1 code runs fine, but my parallel model doesn't and I cannot see the difference that might cause this
yhat = model(x_tst)
to fail with message Input 0 of layer sequential_14 is incompatible with the layer: : expected min_ndim=2, found ndim=1. Full shape received: (2019,) (which is the correct 1D size of x_tst)
For comparison: Google's load_dataset function for the TFP example returns y, x, x_tst, which are all np.ndarray of size 150, whereas I read data from a csv file with pandas.read_csv, split it into train_ and test_datasets and then take 1 col of data as independent variable 'g' and dependent variable 'redz' from the training dataset.
I know x, y, etc. need to be np.ndarray, but one does not create ndarray directly, so I have...
x = np.array(train_dataset['g'])
y = np.array(train_dataset['redz'])
x_tst = np.array(test_dataset['g'])
where x, y, x_tst are all 1-dimensional - just like the TFP example.
The model itself runs
model = tf.keras.Sequential([
tf.keras.layers.Dense(1),
tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)),
])
# Do inference.
model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik)
model.fit(x, y, epochs=1, verbose=False);
(and when plotted gives the expected output for the google data - I don't get this far):
But, per the example when I try to "profit" by doing yhat = model(x_tst) I get the dimensions error given above.
What's wrong?
(If I try mode.predict I think I hit a known bug/gap in TFP; then it fails the assert)
Update - Explicit Reshape Resolves Issue
The hint from Frightera led to further investigation: x_tst had shape (2019,)
Reshaping by x_tst = x_tst.rehape(2019,1) resolved the issue. Is TF inconsistent in its requirements or is there some good reason that the explicit final dimension 1 was required? Who knows. At least predictions can be made now.
In this question Difference between numpy.array shape (R, 1) and (R,), the OP asked for the difference between (R,) and (R,1) but the answers given did not address this specific point.
Similarly in this question Difference between these array shapes in numpy
I believe the answer lies in the numpy glossary, where it says of (n,) that
A parenthesized number followed by a comma denotes a tuple with one
element. The trailing comma distinguishes a one-element tuple from a
parenthesized n.
Which, naturally, echoes the Python statements concerning tuples here
Thus an array of shape (R,) is a tuple describing an array as being 1D of a certain extent R, where the comma is appended to distinguish the tuple (R,) from the non-tuple (R).
However, for a 1D array, there is no sense of row or column ordering; (R,1) is R rows by 1 column, but (1, R) would be 1 row of R columns, and though it shouldn't matter to a 1D iterator either it does or the iterator doesn't correctly recognise ( ,) and thinks it is 2D. (i.e. I don't know the technical details of that part, but these seem to be the only options that account for the behaviour.)
This issue is unrelated to the indeterminacy of size that occurs in tensor definition in Tensorflow. In the context of Tensorflow, Tensors (arrays) may have indeterminate shapes, so that more data may be added along a certain axis as processing occurs, e.g. in batches, in which case the initial Tensor shape includes a leading None to indicate where array expansion is expected to occur. (See e.g. tensor's shape here)
I'm trying to set up a DNN for classification and at one point I want to take the tensor product of a vector with itself. I'm using the Keras functional API at the moment but it isn't immediately clear that there is a layer that does this already.
I've been attempting to use a Lambda layer and numpy in order to try this, but it's not working.
Doing a bit of googling reveals
tf.linalg.LinearOperatorKronecker, which does not seem to work either.
Here's what I've tried:
I have a layer called part_layer whose output is a single vector (rank one tensor).
keras.layers.Lambda(lambda x_array: np.outer(x_array, x_array),) ( part_layer) )
Ideally I would want this to to take a vector of the form [1,2] and give me [[1,2],[2,4]].
But the error I'm getting suggests that the np.outer function is not recognizing its arguments:
AttributeError: 'numpy.ndarray' object has no attribute '_keras_history
Any ideas on what to try next, or if there is a simple function to use?
You can use two operations:
If you want to consider the batch size you can use the Dot function
Otherwise, you can use the the dot function
In both case the code should look like this:
dot_lambda = lambda x_array: tf.keras.layers.dot(x_array, x_array)
# dot_lambda = lambda x_array: tf.keras.layers.Dot(x_array, x_array)
keras.layers.Lambda(dot_lamda)( part_layer)
Hope this help.
Use tf.tensordot(x_array, x_array, axes=0) to achieve what you want. For example, the expression print(tf.tensordot([1,2], [1,2], axes=0)) gives the desired result: [[1,2],[2,4]].
Keras/Tensorflow needs to keep an history of operations applied to tensors to perform the optimization. Numpy has no notion of history, so using it in the middle of a layer is not allowed. tf.tensordot performs the same operation, but keeps the history.
I am new to TensorFlow and just went through the eager execution tutorial and came across the tf.decode_csv function. Not knowing about it, I read the documentation. https://www.tensorflow.org/api_docs/python/tf/decode_csv
I don't really understand it.
The documentation says 'records: A Tensor of type string.'
So, my question is: What qualifies as a 'Tensor'?
I tried the following code:
dec_res = tf.decode_csv('0.1,0.2,0.3', [[0.0], [0.0], [0.0]])
print(dec_res, type(dec_res))
l = [[1,2,3],[4,5,6],[7,8,9]]
r = tf.reshape(l, [9,-1])
print(l, type(l))
print(r, type(r))
So the list dec_res contains tf.tensor objects. That seems reasonable to me. But is an ordinary string also a 'Tensor' according to the documentation?
Then I tried something else with the tf.reshape function. In the documentation https://www.tensorflow.org/api_docs/python/tf/reshape it says that 'tensor: A Tensor.' So, l is supposed to be a tensor. But it is not of type tf.tensor but simply a python list. This is confusing.
Then the documentation says
Returns:
A Tensor. Has the same type as tensor.
But the type of l is list where the type of r is tensorflow.python.framework.ops.Tensor. So the types are not the same.
Then I thought that TensorFlow is very generous with things being a tensor. So I tried:
class car(object):
def __init__(self, color):
self.color = color
red_car = car('red')
#test_reshape = tf.reshape(red_car, [1, -1])
print(red_car.color) # to check, that red_car exists.
Now, the line in comments results in an error.
So, can anyone help me to find out, what qualifies as a 'Tensor'?
P.S.: I tried to read the source code of tf.reshape as given in the documentation
Defined in tensorflow/python/ops/gen_array_ops.py.
But this file does not exist in the Github repo. Does anyone know how to read it?
https://www.tensorflow.org/programmers_guide/tensors
TensorFlow, as the name indicates, is a framework to define and run
computations involving tensors. A tensor is a generalization of
vectors and matrices to potentially higher dimensions. Internally,
TensorFlow represents tensors as n-dimensional arrays of base
datatypes.
What you are observing commes from the fact that tensorflow operations (like reshape) can be built from various python types using the function tf.convert_to_tensor:
https://www.tensorflow.org/api_docs/python/tf/convert_to_tensor
All standard Python op constructors apply this function to each of
their Tensor-valued inputs, which allows those ops to accept numpy
arrays, Python lists, and scalars in addition to Tensor objects
tf.all_variables() gives all Graph variables. Is there an equivalent for all state-tensors?
Background: I want to debug my Graph's behaviour. So again and again I want to check into state-tensors given some input-feed. Usually you would define these when building the Graph and then
session.run(looking_for_this_tensor, input_feed)
to inspect them.
I would, however, much rather have something like this:
for v in tf.all_state_tensors_type_of_method():
print (v.name, ': ', session.run(v, input_feed))
Is there something like that? Looked extensively but couldn't find it.
One way to do that would be to run a loop on every operation in the graph, and for each operation print its output.
The code would look like that:
graph = tf.get_default_graph()
with tf.Session() as sess:
for op in graph.get_operations():
for tensor in op.outputs:
print tensor.name, ':', sess.run(tensor, feed_dict=input_feed)
Warning
Doing that with a big graph and with tensors with big shapes would result in a complete mess, as it will print every sub tensor used in the computations.
You will also need to refer to Tensorboard for the exact names of the tensors, and/or adopt a good naming convention (with tf.name_scope()for instance).
You could also add to a collection the tensors that you want to inspect.
t1 = ... variable / constant
t2 = ... variable / constant
tf.add_to_collection("inspect", t1)
tf.add_to_collection("inspect", t2)
sess = tf.InteractiveSession()
sess.run(..., feed_dict={..})
for v in tf.get_collection("inspect):
v.eval()