I need to export a multi terabyte dataset processed via Azure Data Lake Analytics(ADLA) onto a SQL Server database.
Based on my research so far, I know that I can write the result of (ADLA) output to a Data Lake store or WASB using built-in outputters, and then read the output data from SQL server using Polybase.
However, creating the result of ADLA processing as an ADLA table seems pretty enticing to us. It is a clean solution (no files to manage), multiple readers, built-in partitioning, distribution keys and the potential for allowing other processes to access the tables.
If we use ADLA tables, can I access ADLA tables via SQL Polybase? If not, is there any way to access the files underlying the ADLA tables directly from Polybase?
I know that I can probably do this using ADF, but at this point I want to avoid ADF to the extent possible - to minimize costs, and to keep the process simple.
Unfortunately, Polybase support for ADLA Tables is still on the roadmap and not yet available. Please file a feature request through the SQL Data Warehouse User voice page.
The suggested work-around is to produce the information as Csv in ADLA and then create the partitioned and distributed table in SQL DW and use Polybase to read the data and fill the SQL DW managed table.
Related
I have N databases, for example 10 databases.
Every database has the same schema, but different data.
Now i would like to take every data of each database from the table "Table1" and insert them in a common table in a new database "DWHDatabase" in a table named Table1Common.
so it's an insert like n to 1.
How i can do that? i'm trying to solve my issues with the elastic queries but seems it's a 1 to 1 stuff
Use Azure Data Factory with Linked Services to each database. Use the Copy activity to load the data.
You can also paramaterize the solution.
Parameterize linked services
Parameters in Azure Data Factory by Catherine Wilhemsen
Elastic query is best suited for reporting scenarios in which the majority of the processing (filtering, aggregation) may be done on the external source side. It is unsuitable for ETL procedures involving significant amounts of data transfer from a distant database (s). Consider Azure Synapse Analytics for large reporting workloads or data warehousing applications with more sophisticated queries.
You may use the Copy activity to copy data across on-premises and
cloud-based data storage. After you've copied the data, you may use
other actions to alter and analyse it. The Copy activity may also be
used to publish transformation and analysis findings for use in
business intelligence (BI) and application consumption.
MSFT Copy Activity Overview: Here.
I'm very new to Snowflake, so forgive me if the answer is obvious.
I am loading the data from on-prem into Azure using Data Factory, and then ingesting into Snowflake using COPY INTO. However, I need to enable access for some of the transformed data to other platforms, meaning that if I perform transformation in Snowflake, I'll need to create an external table in Azure (essentially pushing this data back to Azure so other platforms can access it).
As we don't particularly want to introduce a new tool, I have two options for our fairly basic transformation:
do the transformation in ADF
do the transformation in Snowflake in SQL scripts and then create an external table so other teams can access the data using other tools (these platforms don't integrate with Snowflake)
Are there any major drawbacks to option 2 apart from increased storage costs?
I'm trying to weigh up the following: maintenance effort (our team's skills lie in SQL not ADF), cost, and performance.
Any advice would be appreciated.
As stated in the question, there are many possible answers for this scenario - with my favorite being the second one ("do the transformation in Snowflake in SQL scripts and then create an external table so other teams can access the data using other tools").
If you need to make the results of these transformations available on Azure storage, Azure Data Factory supports this natively:
Copy data from Snowflake that utilizes Snowflake's COPY into [location] command to achieve the best performance. https://learn.microsoft.com/en-us/azure/data-factory/connector-snowflake#supported-capabilities
Or you could manage this inside Snowflake using the same COPY INTO that ADF uses.
Let me add a couple screenshots from the Snowflake webinar "Data Warehouse or Data Lake? How You Can Have Both in a Single Platform":
https://resources.snowflake.com/webinars-thought-leadership/data-warehouse-or-data-lake-how-you-can-have-both-in-a-single-platform-3
I need to create a database solely for analytical purposes. The idea here is for it to start off as a 1:1 replica of a current SQL Server database but we will then add in additional tables. The idea here is to be able to have read-write access to a db without dropping anything in production inadvertently.
We would ideally like to set a daily refresh schedule to update all tables in the new tb to match the tables in the live environment.
In terms of the DBMS for the new database, I am very easy - MySQL, SQL Server, PostgreSQL would be great -- I am not hugely familiar with the Google Storage/BigQuery stack but if this is an easy option, I'm open to it.
You could use a standard HA/DR solution with a readable secondary (Availability Groups/mirroring /log shipping).
then have a second database on the new server for your additional tables.
Cloud Storage and BigQuery are not RDBMS services themselves, but could be used in this case to store the backups/exports/dumps from the replica, and then have the analytical work performed on those backups.
Here is an example workflow:
Perform a backup and restore in a different database
Add the new tables in the new database
Export the database as a CSV file on your local machine
Here you could either directly load the CSV file in BigQuery, or upload that file in a Cloud Storage bucket previously created
Query the data
I suggest to take a look at the multiple methods for loading data in BigQuery, as well as the methods for querying against external data sources which may help to determine which database replication/export method might be best for your use case.
Is it possible to virtualize SAP HANA tables in Azure SQL Data Warehouse? If so, please provide link to the documentation or details.
We are currently using Smart Data Access to virtualize tables between HANA tenants and it works well for our scenario. However, Data Warehouse has recently been introduced to our environment and the requirement is to have the data (virtual or replicated) in there as well.
Our current workaround is a script that replicates the data, but now we are having issues with keeping the data in sync. Moreover, we would prefer not to replicate data at all if possible.
Thanks,
Mike
No, it is not possible to virtualise Hana tables from Azure SQL Data Warehouse.
SAP customers typically export data to Azure storage, then ingest to Azure SQL Data Warehouse using the Polybase feature for fast parallel ingestion.
Is there a way to output U-SQL results directly to a SQL DB such as Azure SQL DB? Couldn't find much about that.
Thanks!
U-SQL only currently outputs to files or internal tables (ie tables within ADLA databases), but you have a couple of options. Azure SQL Database has recently gained the ability to load files from Azure Blob Storage using either BULK INSERT or OPENROWSET, so you could try that. This article shows the syntax and gives a reminder that:
Azure Blob storage containers with public blobs or public containers
access permissions are not currently supported.
wasb://<BlobContainerName>#<StorageAccountName>.blob.core.windows.net/yourFolder/yourFile.txt
BULK INSERT and OPENROWSET with Azure Blob Storage is shown here:
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2017/02/23/loading-files-from-azure-blob-storage-into-azure-sql-database/
You could also use Azure Data Factory (ADF). Its Copy Activity could load the data from Azure Data Lake Storage (ADLS) to an Azure SQL Database in two steps:
execute U-SQL script which creates output files in ADLS (internal tables are not currently supported as a source in ADF)
move the data from ADLS to Azure SQL Database
As a final option, if your data is likely to get into larger volumes (ie Terabytes (TB) then you could use Azure SQL Data Warehouse which supports Polybase. Polybase now supports both Azure Blob Storage and ADLS as a source.
Perhaps if you can tell us a bit more about your process we can refine which of these options is most suitable for you.