Why Interface and not a just regular classes - oop

It's a newbie question.
I understand the technical implementation of Interfaces, Abstract classes etc. and I do understand the programmatic differences and how and when to use them. I understand that an interface is like a forced contract without a concrete definition which all implementing classes must implement but I fail to understand why such a contract should be forced in the first place?
For instance, I've a hotel 'H' that has some rooms that can be reserved,
interface H{
//example method to implement
reserveRoom(int n, ...) {}
... other methods
}
on the other hand I've travel booking sites A1, A2, A3 etc which might have their own discount/commission programs, which might up-sell/down-sell to their guests but what I don't get is what does it might have to do with Hotel 'H' booking policy. As the only thing Hotel H is interested in getting a room filled at their asking price.
Please explain why the need of such a design of using interfaces?
Thanks.

Consider interface like a rule-set for your implementations. If you follow the rule-set you can guarantee that consumers will be able to shift to your implementations seamlessly.
Just like JDBC interfaces for example. Java has provided set of interfaces as JDBC and the DB vendors do provide implementations for those interfaces.
That is why your statement like below, stands valid irrespective of which database you are connecting to.
Statement stmt = conn.createStatement( )
Consider, there were no interfaces (JDBC) and MySql driver changed the createStatement() to makeStatement(). You will have to change the code and you will end up writing Database specific code

All forcing or mandatory checking the language does it to help catch our mistakes.
In this case it guards against the mistake of the booking site trying to reserve a room with a function you do not implement.

Related

How do I write an API for an async. / actor module?

I'm very new to Akka. I'm designing a modular system in Akka, and I'm looking for a way to define an API for each module.
Normally in Java I'd write a bunch of beans and some interfaces that accept and produce those beans. From what I gather, in Akka Message types replace the beans, and there seems to be no equivalent for an Interface (or something to help the compiler enforce some "what happens when" or "what can happen when" contract).
I would welcome any advice or best practice on what is the best way to write the most coherent API. If the compiler can understand it, it's a serious bonus.
The API exposed by an Actor (or a collection of collaborating Actors) is defined by the set of message types that it accepts. My recommendation is to keep these message classes close to the Actor, e.g. as static inner classes of the UntypedActor class (for Java) or in the Actor’s companion object (for Scala). For larger actor hierarchies implementing a single interface I would recommend placing all the message classes with the “head actor” (the entry point to the hierarchy) or in a separate class that has a descriptive name and is otherwise empty. Having the as top-level classes can easily lead to name-clashes that can in Java only be resolved by using fully-qualified class names.
The compiler can currently not yet help you in avoiding the mistake of sending the wrong message to an ActorRef because that reference is oblivious to the kind of actor it represents. We are researching ways to tackle this problem, you can take a look at the TypedChannels experiment (Scala only) and later this year we will start working on a simpler solution that also supports Java (codename “Akka Gålbma”, see the roadmap).

Some examples/tips for making clear about interface and polymorphism

I read about polymorphism as well as interface but a bit hard to catch them at once. I would like some real life example where they have been implemented.
It would be better if its of vb.net or php, as i am habitual on coding on them.
interface and polymorphism are not specific to any languages, but concepts used to model the problem and solution space. All the object oriented languages provide a way to achieve or implement code which closely matches theses concepts.
Before looking at what are they? lets briefly look at why you need them? and how they are useful.
Simple example of an interface is "Car" always has same interface Break, Accelerate, once you know how to drive one you can drive any car. Therefore if a person (solution) gets this uniform interface of the car irrespective of make and model he can drive, that is why you can drive almost any car. Same way when you write code to solve one specific class of problem you could reuse the solution against multiple domains or objects which provide similar interface to work with.
Simple example of Polymorphism, look at an Account (it may be checking or saving assuming each attract different dividends) you walk in a bank and ask a teller what is my balance? or dividends? you dont need to specify what kind of an account you're having he will internally figure out looking at his books and provide you the details. Internal details on how the teller works are hidden from you for each case (checking and savings) where as anybody can walk in and ask the question and get the answer suitable to the person in question. So the teller is polymorphic (he's changing his working rules or forms) to suit the customer.
Interfaces like in car example provide a contract to work with objects, as long as you adhere to that contract one set of solutions can be applied to another domain as long as interfaces in question are same. Interfaces promote reuse of solutions by making them generic. As long as you have a credit card you can drink beer kinds, you dont need to have special bar for each kind of credit card.
Polymorphism like in Teller Account example would Promote reuse of interface or messages by reusing same message or interface to provide different but semantically equivalent mechanisms. You pick up your phone and dial a number irrespective of the destination number being landline or a cellphone or a something else, here the interface of dialing a 10 digit number is reused in each of the mechanisms which are equivalent semantically.
Now you can go ahead and look up some interfaces in VB.NET or PHP, I'm not very aware of these languages
Look the way Controls (VB.NET) react to similar methods to see polymorphism in action. For interfaces lookup the objects who implement IEnumerable(from above answer), or ISerializable and objects which implement them.
Well, you've used interfaces if you've ever used a For Each loop. The compiler knows about the IEnumerable(Of T) interface, so it's able to iterate over any sequence by calling GetEnumerator() to get an IEnumerator(Of T), and then call MoveNext() and Current repeatedly to read the elements of the sequence. This will work whether you're iterating over a List(Of T), a LinkedList(Of T), a HashSet(Of T) or whatever. You can depend on just the interface. LINQ to Objects is based on this too (although with some specific optimizations for other interface types).
For polymorphism, I usually use Stream as an example. It's easy to write code which uses any Stream and not care about whether it's actually a FileStream, a NetworkStream, a MemoryStream or something else. The stream implementation will override appropriate members to make it "just work".

How to better organize a class with a lot of fields?

I am currently implementing something similar to an hospital intra site, where doctors can see info about their patients.
Currently, I have a LOT of info regarding each Client: his full name, date of birth, blood type, where he lives, diseases he had, etc.
My first attempt was something of the form:
class Client {
private string fullName;
private Date dateOfBirth;
...
public Get/Set FullName()
public Get/Set DateOfBirth()
...
}
which is basically putting everything together under the same class.
After a while I decided that maybe I should pack together similar concepts into a more general one. For example, I can encapsulate both userName and password into the same concept -- LoginInfo, for example.
If doing this, should I provide all the getters/setters on the Client class that delegate the work to the correct inner concepts, or should I just put getters for the concepts themselves? The first approach would shield the outside world to the Client class implementation, but then maybe, we wouldn't win that much by having all these innner concepts.
Should code outside the Client class even know the different kinds of concepts that'd use inside it?
Any other idea / approach?
I still don't know much about what methods I'll need to have on the Client class. Maybe if there are a lot, it'd be definetely good idea to use small inner concepts to group similar methods in themselves, instead of having such a loose coupled big class.
The data of Client will all be persisted using a standard database, if that makes any difference.
I would say it is useful to pack related pieces of data into common classes. I would only provide delegating getters/setters in Client for very commonly used properties though (if even then - it should be a case by case decision). If a concept makes sense in the problem domain, it is fine to expose it to the outside world too. Your LoginInfo is a marginal detail in this regard, but disease history, health check results etc. etc. are prime candidates for this.
I would also recommend you check out Martin Fowler's excellent Analysis Patterns, which dedicates a chapter to health care patterns; you may probably get some useful ideas out of it.
Something to consider when deciding how to organize data: are there any requirements for tracking history of data. For example, do you need to know what the patient's address was 5 years ago (in addition to knowing their current address, of course)? If so, making that "historically-sensitive" data its own class, will likely make it easier for you down the road. Of course, some data won't be "historically-sensitive" - date of birth for example. :)
Something else to consider: what data will be shared among patients? If you maintain data about family medical history, should that data be shared among siblings? If so, then encapsulating that data in its own object will save you lots of copy/synchronization pain later.
These aren't the only considerations when analyzing your data. But they're definitely part of the puzzle.

Is there a best way to handle naming fads?

In the last year and a bit of working on my team's code base I have noticed a steady progression of naming conventions.
For example, there are a lot of classes that are named to express that they are a class that helps you do something.
Here's the ones I've spotted:
MyClassUtil
MyClassFactory
MyClassHelper
MyClassManager
MyClassService
It just seems to me that over time people come up with naming conventions for relatively the same thing and so instead of having everything named in a consistent manner you wind up with a code base that has a bit of every convention. All the new stuff is named based on the latest fad naming convention and so you can pretty much tell the age of a bit of code by what convention was in fashion at the time.
What is the best way to deal with this tendency? Is it really a problem? As these naming fads come into vogue, should one use the latest fad? Should one rename all existing items with the new naming convention? Or should one just accept the variety as something that is inescapable?
They don't seem like fads... all these names hint at the purpose of the class, and those purposes are different. With programming, it's all in the name, and they should be chosen very carefully. The variety doesn't need to be escaped. The names vary because the purposes of the classes vary.
MyClassUtil
-Some utilities for working with MyClass that it didn't come with. Maybe MyClass belongs to a library you're using, but you often use some higher level functions with it and you need somewhere to put them.
MyClassFactory
-Creates instances of MyClass in an abstracted way. This allows you to write code that needs MyClass instances. It can get those new instances from a MyClassFactory. This would allow the Factory to modified in future to serve up different specific implementations of MyClass. Maybe under unit testing, the Factory just serves up dummy/mock MyClasses. This means a class that uses the factory can be tested without needing to change it, just change the factory, and voilà you can isolate the class being tested.
MyClassHelper
-Ok, I may agree, perhaps this can be more specific. It does something to help with MyClass, but what. Maybe this is a bit similar to MyClassUtil. But, probably MyClassUtil is general functions that work with MyClass, whereas the helper is initialized with a specific instance of MyClass and then can do operations on that one instance. You need a new helper for each MyClass you want to help.
MyClassManager
-Maybe this deals with a pool of MyClass instances and stores or orchestrates them. Eg. in a CommunicationsManager, the class would handle wiring together classes that handle talking to a port or connection like ethernet or serial, and a class that deals with the comms protocol being sent over it so it can transport packets, and a class that deals with the messages in those packets.
MyClassService
-A service can do things for you, like given a postcode convert it into a grid-reference. Usually a service can resolve to many specific things. With the postcode example, this class might be have implementations that can talk to different web sites to do the conversion.
All of the names of classes you've given above indicate to me a striking departure from object-oriented principles. There's no way of telling what "MyClassUtil" or "MyClassService" does. It could be anything. Class naming should be specific, and should relay clearly the actual function of the class. None of these do. The best way to deal with this tendency is to brush up on object oriented programming skills and name the classes accordingly.
Now, it could be that these examples point out the function, within the application architecture, that these classes represent, and your use of "MyClass" is simply a placeholder for something more definitive at runtime, in which case, I wouldn't view these as naming fads, but rather as descriptive indicators of the function of the class itself, with a loose hint of the application's underlying architecture.
If this is pervasive, the team needs to spend some time studying OO design: reading the source code to well-respected OO frameworks, books on design patterns or books such as Evans "Domain Driven Design".
"Util" and "Manager" are often symptoms of poor design - "code smells". So is "Helper" outside of special contexts (Rails apps) where it's well entrenched.
"Factory" and "Service" have precise technical meanings, you can check the code to see if it conforms to those design patterns.
The general remedy is to sit down with the team, and have an explicit discussion about what benefits you're expecting from these naming schemes, what makes sense and what doesn't, and then over the next few months apply refactoring techniques to phase out the names you've all decided are code smells.
Naming is important. It shouldn't be taken lightly, nor is it a subjective matter. True, there is often more than one correct answer to a given naming issue. However, there are seldom many answers consistent with previous choices, which is key.
Renaming the names to better ones and refactoring the code so that each class has a clear responsibility, is recommended. To know what kind of names to use, read Tim Ottinger's article about Meaningful Names.
When a class does only one thing, then giving it a descriptive name is usually easy. Words such as "manager" are vague and may indicate that the class is responsible for doing so many unrelated things, that no simple name is able to describe what the class does. If you can know what the class does just by looking at the name of the class, then the class has a good name.
I don't really see how Factory or Service fit in to a particular fad...
Factory is a design pattern and if the class really is a factory then it's a perfectly appropriate name.
If a class is a Windows service what's wrong with calling it service?
There isn't a problem unless you find that performing all the rename refactors is too costly even though you really want to do them.
Why not use a static analysis tool to help enforce a set of style and consistency rule?
If you're in the .NET world Microsoft provides a tool called StyleCop
In the classname examples you give does "MyClass" stand for an actual class name, so that you are really seeing names like "PersonnelRecordUtil" or "GraphNodeFactory"? MyClassFactory is a really bad actual name for a class.

Why would I want to use Interfaces? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
I understand that they force you to implement methods and such but what I cant understand is why you would want to use them. Can anybody give me a good example or explanation on why I would want to implement this.
One specific example: interfaces are a good way of specifying a contract that other people's code must meet.
If I'm writing a library of code, I may write code that is valid for objects that have a certain set of behaviours. The best solution is to specify those behaviours in an interface (no implementation, just a description) and then use references to objects implementing that interface in my library code.
Then any random person can come along, create a class that implements that interface, instantiate an object of that class and pass it to my library code and expect it to work. Note: it is of course possible to strictly implement an interface while ignoring the intention of the interface, so merely implementing an interface is no guarantee that things will work. Stupid always finds a way! :-)
Another specific example: two teams working on different components that must co-operate. If the two teams sit down on day 1 and agree on a set of interfaces, then they can go their separate ways and implement their components around those interfaces. Team A can build test harnesses that simulate the component from Team B for testing, and vice versa. Parallel development, and fewer bugs.
The key point is that interfaces provide a layer of abstraction so that you can write code that is ignorant of unnecessary details.
The canonical example used in most textbooks is that of sorting routines. You can sort any class of objects so long as you have a way of comparing any two of the objects. You can make any class sortable therefore by implementing the IComparable interface, which forces you to implement a method for comparing two instances. All of the sort routines are written to handle references to IComparable objects, so as soon as you implement IComparable you can use any of those sort routines on collections of objects of your class.
The easiest way of understanding interfaces is that they allow different objects to expose COMMON functionality. This allows the programmer to write much simplier, shorter code that programs to an interface, then as long as the objects implement that interface it will work.
Example 1:
There are many different database providers, MySQL, MSSQL, Oracle, etc. However all database objects can DO the same things so you will find many interfaces for database objects. If an object implements IDBConnection then it exposes the methods Open() and Close(). So if I want my program to be database provider agnostic, I program to the interface and not to the specific providers.
IDbConnection connection = GetDatabaseConnectionFromConfig()
connection.Open()
// do stuff
connection.Close()
See by programming to an interface (IDbconnection) I can now SWAP out any data provider in my config but my code stays the exact same. This flexibility can be extremely useful and easy to maintain. The downside to this is that I can only perform 'generic' database operations and may not fully utilize the strength that each particular provider offers so as with everything in programming you have a trade off and you must determine which scenario will benefit you the most.
Example 2:
If you notice almost all collections implement this interface called IEnumerable. IEnumerable returns an IEnumerator which has MoveNext(), Current, and Reset(). This allows C# to easily move through your collection. The reason it can do this is since it exposes the IEnumerable interface it KNOWS that the object exposes the methods it needs to go through it. This does two things. 1) foreach loops will now know how to enumerate the collection and 2) you can now apply powerful LINQ exprssions to your collection. Again the reason why interfaces are so useful here is because all collections have something in COMMON, they can be moved through. Each collection may be moved through a different way (linked list vs array) but that is the beauty of interfaces is that the implementation is hidden and irrelevant to the consumer of the interface. MoveNext() gives you the next item in the collection, it doesn't matter HOW it does it. Pretty nice, huh?
Example 3:
When you are designing your own interfaces you just have to ask yourself one question. What do these things have in common? Once you find all the things that the objects share, you abstract those properties/methods into an interface so that each object can inherit from it. Then you can program against several objects using one interface.
And of course I have to give my favorite C++ polymorphic example, the animals example. All animals share certain characteristics. Lets say they can Move, Speak, and they all have a Name. Since I just identified what all my animals have in common and I can abstract those qualities into the IAnimal interface. Then I create a Bear object, an Owl object, and a Snake object all implementing this interface. The reason why you can store different objects together that implement the same interface is because interfaces represent an IS-A replationship. A bear IS-A animal, an owl IS-A animal, so it makes since that I can collect them all as Animals.
var animals = new IAnimal[] = {new Bear(), new Owl(), new Snake()} // here I can collect different objects in a single collection because they inherit from the same interface
foreach (IAnimal animal in animals)
{
Console.WriteLine(animal.Name)
animal.Speak() // a bear growls, a owl hoots, and a snake hisses
animal.Move() // bear runs, owl flys, snake slithers
}
You can see that even though these animals perform each action in a different way, I can program against them all in one unified model and this is just one of the many benefits of Interfaces.
So again the most important thing with interfaces is what do objects have in common so that you can program against DIFFERENT objects in the SAME way. Saves time, creates more flexible applications, hides complexity/implementation, models real-world objects / situations, among many other benefits.
Hope this helps.
One typical example is a plugin architecture. Developer A writes the main app, and wants to make certain that all plugins written by developer B, C and D conform to what his app expects of them.
Interfaces define contracts, and that's the key word.
You use an interface when you need to define a contract in your program but you don't really care about the rest of the properties of the class that fulfills that contract as long as it does.
So, let's see an example. Suppose you have a method which provides the functionality to sort a list. First thing .. what's a list? Do you really care what elements does it holds in order to sort the list? Your answer should be no... In .NET (for example) you have an interface called IList which defines the operations that a list MUST support so you don't care the actual details underneath the surface.
Back to the example, you don't really know the class of the objects in the list... neither you care. If you can just compare the object you might as well sort them. So you declare a contract:
interface IComparable
{
// Return -1 if this is less than CompareWith
// Return 0 if object are equal
// Return 1 if CompareWith is less than this
int Compare(object CompareWith);
}
that contract specify that a method which accepts an object and returns an int must be implemented in order to be comparable. Now you have defined an contract and for now on you don't care about the object itself but about the contract so you can just do:
IComparable comp1 = list.GetItem(i) as IComparable;
if (comp1.Compare(list.GetItem(i+1)) < 0)
swapItem(list,i, i+1)
PS: I know the examples are a bit naive but they are examples ...
When you need different classes to share same methods you use Interfaces.
Interfaces are absolutely necessary in an object-oriented system that expects to make good use of polymorphism.
A classic example might be IVehicle, which has a Move() method. You could have classes Car, Bike and Tank, which implement IVehicle. They can all Move(), and you could write code that didn't care what kind of vehicle it was dealing with, just so it can Move().
void MoveAVehicle(IVehicle vehicle)
{
vehicle.Move();
}
The pedals on a car implement an interface. I'm from the US where we drive on the right side of the road. Our steering wheels are on the left side of the car. The pedals for a manual transmission from left to right are clutch -> brake -> accelerator. When I went to Ireland, the driving is reversed. Cars' steering wheels are on the right and they drive on the left side of the road... but the pedals, ah the pedals... they implemented the same interface... all three pedals were in the same order... so even if the class was different and the network that class operated on was different, i was still comfortable with the pedal interface. My brain was able to call my muscles on this car just like every other car.
Think of the numerous non-programming interfaces we can't live without. Then answer your own question.
Imagine the following basic interface which defines a basic CRUD mechanism:
interface Storable {
function create($data);
function read($id);
function update($data, $id);
function delete($id);
}
From this interface, you can tell that any object that implements it, must have functionality to create, read, update and delete data. This could by a database connection, a CSV file reader, and XML file reader, or any other kind of mechanism that might want to use CRUD operations.
Thus, you could now have something like the following:
class Logger {
Storable storage;
function Logger(Storable storage) {
this.storage = storage;
}
function writeLogEntry() {
this.storage.create("I am a log entry");
}
}
This logger doesn't care if you pass in a database connection, or something that manipulates files on disk. All it needs to know is that it can call create() on it, and it'll work as expected.
The next question to arise from this then is, if databases and CSV files, etc, can all store data, shouldn't they be inherited from a generic Storable object and thus do away with the need for interfaces? The answer to this is no... not every database connection might implement CRUD operations, and the same applies to every file reader.
Interfaces define what the object is capable of doing and how you need to use it... not what it is!
Interfaces are a form of polymorphism. An example:
Suppose you want to write some logging code. The logging is going to go somewhere (maybe to a file, or a serial port on the device the main code runs on, or to a socket, or thrown away like /dev/null). You don't know where: the user of your logging code needs to be free to determine that. In fact, your logging code doesn't care. It just wants something it can write bytes to.
So, you invent an interface called "something you can write bytes to". The logging code is given an instance of this interface (perhaps at runtime, perhaps it's configured at compile time. It's still polymorphism, just different kinds). You write one or more classes implementing the interface, and you can easily change where logging goes just by changing which one the logging code will use. Someone else can change where logging goes by writing their own implementations of the interface, without changing your code. That's basically what polymorphism amounts to - knowing just enough about an object to use it in a particular way, while allowing it to vary in all the respects you don't need to know about. An interface describes things you need to know.
C's file descriptors are basically an interface "something I can read and/or write bytes from and/or to", and almost every typed language has such interfaces lurking in its standard libraries: streams or whatever. Untyped languages usually have informal types (perhaps called contracts) that represent streams. So in practice you almost never have to actually invent this particular interface yourself: you use what the language gives you.
Logging and streams are just one example - interfaces happen whenever you can describe in abstract terms what an object is supposed to do, but don't want to tie it down to a particular implementation/class/whatever.
There are a number of reasons to do so. When you use an interface, you're ready in the future when you need to refactor/rewrite the code. You can also provide an sort of standardized API for simple operations.
For example, if you want to write a sort algorithm like the quicksort, all you need to sort any list of objects is that you can successfuuly compare two of the objects. If you create an interface, say ISortable, than anyone who creates objects can implement the ISortable interface and they can use your sort code.
If you're writing code that uses a database storage, and you write to an storage interface, you can replace that code down the line.
Interfaces encourage looser coupling of your code so that you can have greater flexibility.
In an article in my blog I briefly describe three purposes interfaces have.
Interfaces may have different
purposes:
Provide different implementations for the same goal. The typical example
is a list, which may have different
implementations for different
performance use cases (LinkedList,
ArrayList, etc.).
Allow criteria modification. For example, a sort function may accept a
Comparable interface in order to
provide any kind of sort criteria,
based on the same algorithm.
Hide implementation details. This also makes it easier for a user to
read the comments, since in the body
of the interface there are only
methods, fields and comments, no long
chunks of code to skip.
Here's the article's full text: http://weblogs.manas.com.ar/ary/2007/11/
The best Java code I have ever seen defined almost all object references as instances of interfaces instead of instances of classes. It is a strong sign of quality code designed for flexibility and change.
As you noted, interfaces are good for when you want to force someone to make it in a certain format.
Interfaces are good when data not being in a certain format can mean making dangerous assumptions in your code.
For example, at the moment I'm writing an application that will transform data from one format in to another. I want to force them to place those fields in so I know they will exist and will have a greater chance of being properly implemented. I don't care if another version comes out and it doesn't compile for them because it's more likely that data is required anyways.
Interfaces are rarely used because of this, since usually you can make assumptions or don't really require the data to do what you need to do.
An interface, defines merely the interface. Later, you can define method (on other classes), which accepted interfaces as parameters (or more accurately, object which implement that interface). This way your method can operate on a large variety of objects, whose only commonality is that they implement that interface.
First, they give you an additional layer of abstraction. You can say "For this function, this parameter must be an object that has these methods with these parameters". And you probably want to also set the meaning of these methods, in somehow abstracted terms, yet allowing you to reason about the code. In duck-typed languages you get that for free. No need for explicit, syntax "interfaces". Yet you probably still create a set of conceptual interfaces, something like contracts (like in Design by Contract).
Furthermore, interfaces are sometimes used for less "pure" purposes. In Java, they can be used to emulate multiple inheritance. In C++, you can use them to reduce compile times.
In general, they reduce coupling in your code. That's a good thing.
Your code may also be easier to test this way.
Let's say you want to keep track of a collection of stuff. Said collections must support a bunch of things, like adding and removing items, and checking if an item is in the collection.
You could then specify an interface ICollection with the methods add(), remove() and contains().
Code that doesn't need to know what kind of collection (List, Array, Hash-table, Red-black tree, etc) could accept objects that implemented the interface and work with them without knowing their actual type.
In .Net, I create base classes and inherit from them when the classes are somehow related. For example, base class Person could be inherited by Employee and Customer. Person might have common properties like address fields, name, telephone, and so forth. Employee might have its own department property. Customer has other exclusive properties.
Since a class can only inherit from one other class in .Net, I use interfaces for additional shared functionality. Sometimes interfaces are shared by classes that are otherwise unrelated. Using an interface creates a contract that developers will know is shared by all of the other classes implementing it. I also forces those classes to implement all of its members.
In C# interfaces are also extremely useful for allowing polymorphism for classes that do not share the same base classes. Meaning, since we cannot have multiple inheritance you can use interfaces to allow different types to be used. It's also a way to allow you to expose private members for use without reflection (explicit implementation), so it can be a good way to implement functionality while keeping your object model clean.
For example:
public interface IExample
{
void Foo();
}
public class Example : IExample
{
// explicit implementation syntax
void IExample.Foo() { ... }
}
/* Usage */
Example e = new Example();
e.Foo(); // error, Foo does not exist
((IExample)e).Foo(); // success
I think you need to get a good understand of design patterns so see there power.
Check out
Head First Design Patterns