Apply a pandas window function to a reversed MultiIndex level? - pandas

I need to get an .expanding calculation on a MultiIndex DataFrame. But I need it to run in reverse. Here's a sample DataFrame:
np.random.seed(456)
j = [(a, b) for a in ['A','B','C'] for b in pd.date_range('2018-01-01', periods=5, freq='W')]
i = pd.MultiIndex.from_tuples(j, names=['Name','Num'])
df = pd.DataFrame(np.random.randn(15), i, columns=['Vals'])
df.loc[df['Vals'] < 0] = np.nan
And here is an example of what I want to do for each of the level-0 index values:
k = df.loc['A']
k['Missing'] = k[::-1].isnull().expanding().sum() # Expanding-sum on reversed level-1
This produces the correct results for that one top-level value 'A':
Vals Missing
Num
2018-01-07 NaN 2.0
2018-01-14 NaN 1.0
2018-01-21 0.618576 0.0
2018-01-28 0.568692 0.0
2018-02-04 1.350509 0.0
But how do I get that to apply to all top-level index values, so I can set df['Missing'] =?
I was trying things of the form df.groupby('Name')[::-1].isnull().expanding().sum() ... but I can't get a functional form that allows the level-1 index to be reversed for the calculation.
What is a pandaic expression to do this?

Got it: After grouping we have to strip the top level off the MultiIndex before working on the inner set:
df['Missing'] = df.groupby('Name').apply(
lambda x: x.reset_index(level=0, drop=True)[::-1].isnull().expanding().sum()
)
I.e., we groupby('Name'), and then for each group the lambda expression strips the level-0 index via .reset_index(level=0, drop=True), at which point we can use the remaining DataFrame in reverse order: x[::-1].

Related

Group rows of 2nd Column by 1st Column using condition for length of string characters of text of the1st Column [duplicate]

The docs show how to apply multiple functions on a groupby object at a time using a dict with the output column names as the keys:
In [563]: grouped['D'].agg({'result1' : np.sum,
.....: 'result2' : np.mean})
.....:
Out[563]:
result2 result1
A
bar -0.579846 -1.739537
foo -0.280588 -1.402938
However, this only works on a Series groupby object. And when a dict is similarly passed to a groupby DataFrame, it expects the keys to be the column names that the function will be applied to.
What I want to do is apply multiple functions to several columns (but certain columns will be operated on multiple times). Also, some functions will depend on other columns in the groupby object (like sumif functions). My current solution is to go column by column, and doing something like the code above, using lambdas for functions that depend on other rows. But this is taking a long time, (I think it takes a long time to iterate through a groupby object). I'll have to change it so that I iterate through the whole groupby object in a single run, but I'm wondering if there's a built in way in pandas to do this somewhat cleanly.
For example, I've tried something like
grouped.agg({'C_sum' : lambda x: x['C'].sum(),
'C_std': lambda x: x['C'].std(),
'D_sum' : lambda x: x['D'].sum()},
'D_sumifC3': lambda x: x['D'][x['C'] == 3].sum(), ...)
but as expected I get a KeyError (since the keys have to be a column if agg is called from a DataFrame).
Is there any built in way to do what I'd like to do, or a possibility that this functionality may be added, or will I just need to iterate through the groupby manually?
The second half of the currently accepted answer is outdated and has two deprecations. First and most important, you can no longer pass a dictionary of dictionaries to the agg groupby method. Second, never use .ix.
If you desire to work with two separate columns at the same time I would suggest using the apply method which implicitly passes a DataFrame to the applied function. Let's use a similar dataframe as the one from above
df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
df['group'] = [0, 0, 1, 1]
df
a b c d group
0 0.418500 0.030955 0.874869 0.145641 0
1 0.446069 0.901153 0.095052 0.487040 0
2 0.843026 0.936169 0.926090 0.041722 1
3 0.635846 0.439175 0.828787 0.714123 1
A dictionary mapped from column names to aggregation functions is still a perfectly good way to perform an aggregation.
df.groupby('group').agg({'a':['sum', 'max'],
'b':'mean',
'c':'sum',
'd': lambda x: x.max() - x.min()})
a b c d
sum max mean sum <lambda>
group
0 0.864569 0.446069 0.466054 0.969921 0.341399
1 1.478872 0.843026 0.687672 1.754877 0.672401
If you don't like that ugly lambda column name, you can use a normal function and supply a custom name to the special __name__ attribute like this:
def max_min(x):
return x.max() - x.min()
max_min.__name__ = 'Max minus Min'
df.groupby('group').agg({'a':['sum', 'max'],
'b':'mean',
'c':'sum',
'd': max_min})
a b c d
sum max mean sum Max minus Min
group
0 0.864569 0.446069 0.466054 0.969921 0.341399
1 1.478872 0.843026 0.687672 1.754877 0.672401
Using apply and returning a Series
Now, if you had multiple columns that needed to interact together then you cannot use agg, which implicitly passes a Series to the aggregating function. When using apply the entire group as a DataFrame gets passed into the function.
I recommend making a single custom function that returns a Series of all the aggregations. Use the Series index as labels for the new columns:
def f(x):
d = {}
d['a_sum'] = x['a'].sum()
d['a_max'] = x['a'].max()
d['b_mean'] = x['b'].mean()
d['c_d_prodsum'] = (x['c'] * x['d']).sum()
return pd.Series(d, index=['a_sum', 'a_max', 'b_mean', 'c_d_prodsum'])
df.groupby('group').apply(f)
a_sum a_max b_mean c_d_prodsum
group
0 0.864569 0.446069 0.466054 0.173711
1 1.478872 0.843026 0.687672 0.630494
If you are in love with MultiIndexes, you can still return a Series with one like this:
def f_mi(x):
d = []
d.append(x['a'].sum())
d.append(x['a'].max())
d.append(x['b'].mean())
d.append((x['c'] * x['d']).sum())
return pd.Series(d, index=[['a', 'a', 'b', 'c_d'],
['sum', 'max', 'mean', 'prodsum']])
df.groupby('group').apply(f_mi)
a b c_d
sum max mean prodsum
group
0 0.864569 0.446069 0.466054 0.173711
1 1.478872 0.843026 0.687672 0.630494
For the first part you can pass a dict of column names for keys and a list of functions for the values:
In [28]: df
Out[28]:
A B C D E GRP
0 0.395670 0.219560 0.600644 0.613445 0.242893 0
1 0.323911 0.464584 0.107215 0.204072 0.927325 0
2 0.321358 0.076037 0.166946 0.439661 0.914612 1
3 0.133466 0.447946 0.014815 0.130781 0.268290 1
In [26]: f = {'A':['sum','mean'], 'B':['prod']}
In [27]: df.groupby('GRP').agg(f)
Out[27]:
A B
sum mean prod
GRP
0 0.719580 0.359790 0.102004
1 0.454824 0.227412 0.034060
UPDATE 1:
Because the aggregate function works on Series, references to the other column names are lost. To get around this, you can reference the full dataframe and index it using the group indices within the lambda function.
Here's a hacky workaround:
In [67]: f = {'A':['sum','mean'], 'B':['prod'], 'D': lambda g: df.loc[g.index].E.sum()}
In [69]: df.groupby('GRP').agg(f)
Out[69]:
A B D
sum mean prod <lambda>
GRP
0 0.719580 0.359790 0.102004 1.170219
1 0.454824 0.227412 0.034060 1.182901
Here, the resultant 'D' column is made up of the summed 'E' values.
UPDATE 2:
Here's a method that I think will do everything you ask. First make a custom lambda function. Below, g references the group. When aggregating, g will be a Series. Passing g.index to df.ix[] selects the current group from df. I then test if column C is less than 0.5. The returned boolean series is passed to g[] which selects only those rows meeting the criteria.
In [95]: cust = lambda g: g[df.loc[g.index]['C'] < 0.5].sum()
In [96]: f = {'A':['sum','mean'], 'B':['prod'], 'D': {'my name': cust}}
In [97]: df.groupby('GRP').agg(f)
Out[97]:
A B D
sum mean prod my name
GRP
0 0.719580 0.359790 0.102004 0.204072
1 0.454824 0.227412 0.034060 0.570441
Pandas >= 0.25.0, named aggregations
Since pandas version 0.25.0 or higher, we are moving away from the dictionary based aggregation and renaming, and moving towards named aggregations which accepts a tuple. Now we can simultaneously aggregate + rename to a more informative column name:
Example:
df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
df['group'] = [0, 0, 1, 1]
a b c d group
0 0.521279 0.914988 0.054057 0.125668 0
1 0.426058 0.828890 0.784093 0.446211 0
2 0.363136 0.843751 0.184967 0.467351 1
3 0.241012 0.470053 0.358018 0.525032 1
Apply GroupBy.agg with named aggregation:
df.groupby('group').agg(
a_sum=('a', 'sum'),
a_mean=('a', 'mean'),
b_mean=('b', 'mean'),
c_sum=('c', 'sum'),
d_range=('d', lambda x: x.max() - x.min())
)
a_sum a_mean b_mean c_sum d_range
group
0 0.947337 0.473668 0.871939 0.838150 0.320543
1 0.604149 0.302074 0.656902 0.542985 0.057681
As an alternative (mostly on aesthetics) to Ted Petrou's answer, I found I preferred a slightly more compact listing. Please don't consider accepting it, it's just a much-more-detailed comment on Ted's answer, plus code/data. Python/pandas is not my first/best, but I found this to read well:
df.groupby('group') \
.apply(lambda x: pd.Series({
'a_sum' : x['a'].sum(),
'a_max' : x['a'].max(),
'b_mean' : x['b'].mean(),
'c_d_prodsum' : (x['c'] * x['d']).sum()
})
)
a_sum a_max b_mean c_d_prodsum
group
0 0.530559 0.374540 0.553354 0.488525
1 1.433558 0.832443 0.460206 0.053313
I find it more reminiscent of dplyr pipes and data.table chained commands. Not to say they're better, just more familiar to me. (I certainly recognize the power and, for many, the preference of using more formalized def functions for these types of operations. This is just an alternative, not necessarily better.)
I generated data in the same manner as Ted, I'll add a seed for reproducibility.
import numpy as np
np.random.seed(42)
df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
df['group'] = [0, 0, 1, 1]
df
a b c d group
0 0.374540 0.950714 0.731994 0.598658 0
1 0.156019 0.155995 0.058084 0.866176 0
2 0.601115 0.708073 0.020584 0.969910 1
3 0.832443 0.212339 0.181825 0.183405 1
New in version 0.25.0.
To support column-specific aggregation with control over the output column names, pandas accepts the special syntax in GroupBy.agg(), known as “named aggregation”, where
The keywords are the output column names
The values are tuples whose first element is the column to select and the second element is the aggregation to apply to that column. Pandas provides the pandas.NamedAgg namedtuple with the fields ['column', 'aggfunc'] to make it clearer what the arguments are. As usual, the aggregation can be a callable or a string alias.
>>> animals = pd.DataFrame({
... 'kind': ['cat', 'dog', 'cat', 'dog'],
... 'height': [9.1, 6.0, 9.5, 34.0],
... 'weight': [7.9, 7.5, 9.9, 198.0]
... })
>>> print(animals)
kind height weight
0 cat 9.1 7.9
1 dog 6.0 7.5
2 cat 9.5 9.9
3 dog 34.0 198.0
>>> print(
... animals
... .groupby('kind')
... .agg(
... min_height=pd.NamedAgg(column='height', aggfunc='min'),
... max_height=pd.NamedAgg(column='height', aggfunc='max'),
... average_weight=pd.NamedAgg(column='weight', aggfunc=np.mean),
... )
... )
min_height max_height average_weight
kind
cat 9.1 9.5 8.90
dog 6.0 34.0 102.75
pandas.NamedAgg is just a namedtuple. Plain tuples are allowed as well.
>>> print(
... animals
... .groupby('kind')
... .agg(
... min_height=('height', 'min'),
... max_height=('height', 'max'),
... average_weight=('weight', np.mean),
... )
... )
min_height max_height average_weight
kind
cat 9.1 9.5 8.90
dog 6.0 34.0 102.75
Additional keyword arguments are not passed through to the aggregation functions. Only pairs of (column, aggfunc) should be passed as **kwargs. If your aggregation functions requires additional arguments, partially apply them with functools.partial().
Named aggregation is also valid for Series groupby aggregations. In this case there’s no column selection, so the values are just the functions.
>>> print(
... animals
... .groupby('kind')
... .height
... .agg(
... min_height='min',
... max_height='max',
... )
... )
min_height max_height
kind
cat 9.1 9.5
dog 6.0 34.0
This is a twist on 'exans' answer that uses Named Aggregations. It's the same but with argument unpacking which allows you to still pass in a dictionary to the agg function.
The named aggs are a nice feature, but at first glance might seem hard to write programmatically since they use keywords, but it's actually simple with argument/keyword unpacking.
animals = pd.DataFrame({'kind': ['cat', 'dog', 'cat', 'dog'],
'height': [9.1, 6.0, 9.5, 34.0],
'weight': [7.9, 7.5, 9.9, 198.0]})
agg_dict = {
"min_height": pd.NamedAgg(column='height', aggfunc='min'),
"max_height": pd.NamedAgg(column='height', aggfunc='max'),
"average_weight": pd.NamedAgg(column='weight', aggfunc=np.mean)
}
animals.groupby("kind").agg(**agg_dict)
The Result
min_height max_height average_weight
kind
cat 9.1 9.5 8.90
dog 6.0 34.0 102.75
Ted's answer is amazing. I ended up using a smaller version of that in case anyone is interested. Useful when you are looking for one aggregation that depends on values from multiple columns:
create a dataframe
df = pd.DataFrame({
'a': [1, 2, 3, 4, 5, 6],
'b': [1, 1, 0, 1, 1, 0],
'c': ['x', 'x', 'y', 'y', 'z', 'z']
})
print(df)
a b c
0 1 1 x
1 2 1 x
2 3 0 y
3 4 1 y
4 5 1 z
5 6 0 z
grouping and aggregating with apply (using multiple columns)
print(
df
.groupby('c')
.apply(lambda x: x['a'][(x['a'] > 1) & (x['b'] == 1)]
.mean()
)
c
x 2.0
y 4.0
z 5.0
grouping and aggregating with aggregate (using multiple columns)
I like this approach since I can still use aggregate. Perhaps people will let me know why apply is needed for getting at multiple columns when doing aggregations on groups.
It seems obvious now, but as long as you don't select the column of interest directly after the groupby, you will have access to all the columns of the dataframe from within your aggregation function.
only access to the selected column
df.groupby('c')['a'].aggregate(lambda x: x[x > 1].mean())
access to all columns since selection is after all the magic
df.groupby('c').aggregate(lambda x: x[(x['a'] > 1) & (x['b'] == 1)].mean())['a']
or similarly
df.groupby('c').aggregate(lambda x: x['a'][(x['a'] > 1) & (x['b'] == 1)].mean())
I hope this helps.

Compare Rows of Strings in Dataframe [duplicate]

The docs show how to apply multiple functions on a groupby object at a time using a dict with the output column names as the keys:
In [563]: grouped['D'].agg({'result1' : np.sum,
.....: 'result2' : np.mean})
.....:
Out[563]:
result2 result1
A
bar -0.579846 -1.739537
foo -0.280588 -1.402938
However, this only works on a Series groupby object. And when a dict is similarly passed to a groupby DataFrame, it expects the keys to be the column names that the function will be applied to.
What I want to do is apply multiple functions to several columns (but certain columns will be operated on multiple times). Also, some functions will depend on other columns in the groupby object (like sumif functions). My current solution is to go column by column, and doing something like the code above, using lambdas for functions that depend on other rows. But this is taking a long time, (I think it takes a long time to iterate through a groupby object). I'll have to change it so that I iterate through the whole groupby object in a single run, but I'm wondering if there's a built in way in pandas to do this somewhat cleanly.
For example, I've tried something like
grouped.agg({'C_sum' : lambda x: x['C'].sum(),
'C_std': lambda x: x['C'].std(),
'D_sum' : lambda x: x['D'].sum()},
'D_sumifC3': lambda x: x['D'][x['C'] == 3].sum(), ...)
but as expected I get a KeyError (since the keys have to be a column if agg is called from a DataFrame).
Is there any built in way to do what I'd like to do, or a possibility that this functionality may be added, or will I just need to iterate through the groupby manually?
The second half of the currently accepted answer is outdated and has two deprecations. First and most important, you can no longer pass a dictionary of dictionaries to the agg groupby method. Second, never use .ix.
If you desire to work with two separate columns at the same time I would suggest using the apply method which implicitly passes a DataFrame to the applied function. Let's use a similar dataframe as the one from above
df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
df['group'] = [0, 0, 1, 1]
df
a b c d group
0 0.418500 0.030955 0.874869 0.145641 0
1 0.446069 0.901153 0.095052 0.487040 0
2 0.843026 0.936169 0.926090 0.041722 1
3 0.635846 0.439175 0.828787 0.714123 1
A dictionary mapped from column names to aggregation functions is still a perfectly good way to perform an aggregation.
df.groupby('group').agg({'a':['sum', 'max'],
'b':'mean',
'c':'sum',
'd': lambda x: x.max() - x.min()})
a b c d
sum max mean sum <lambda>
group
0 0.864569 0.446069 0.466054 0.969921 0.341399
1 1.478872 0.843026 0.687672 1.754877 0.672401
If you don't like that ugly lambda column name, you can use a normal function and supply a custom name to the special __name__ attribute like this:
def max_min(x):
return x.max() - x.min()
max_min.__name__ = 'Max minus Min'
df.groupby('group').agg({'a':['sum', 'max'],
'b':'mean',
'c':'sum',
'd': max_min})
a b c d
sum max mean sum Max minus Min
group
0 0.864569 0.446069 0.466054 0.969921 0.341399
1 1.478872 0.843026 0.687672 1.754877 0.672401
Using apply and returning a Series
Now, if you had multiple columns that needed to interact together then you cannot use agg, which implicitly passes a Series to the aggregating function. When using apply the entire group as a DataFrame gets passed into the function.
I recommend making a single custom function that returns a Series of all the aggregations. Use the Series index as labels for the new columns:
def f(x):
d = {}
d['a_sum'] = x['a'].sum()
d['a_max'] = x['a'].max()
d['b_mean'] = x['b'].mean()
d['c_d_prodsum'] = (x['c'] * x['d']).sum()
return pd.Series(d, index=['a_sum', 'a_max', 'b_mean', 'c_d_prodsum'])
df.groupby('group').apply(f)
a_sum a_max b_mean c_d_prodsum
group
0 0.864569 0.446069 0.466054 0.173711
1 1.478872 0.843026 0.687672 0.630494
If you are in love with MultiIndexes, you can still return a Series with one like this:
def f_mi(x):
d = []
d.append(x['a'].sum())
d.append(x['a'].max())
d.append(x['b'].mean())
d.append((x['c'] * x['d']).sum())
return pd.Series(d, index=[['a', 'a', 'b', 'c_d'],
['sum', 'max', 'mean', 'prodsum']])
df.groupby('group').apply(f_mi)
a b c_d
sum max mean prodsum
group
0 0.864569 0.446069 0.466054 0.173711
1 1.478872 0.843026 0.687672 0.630494
For the first part you can pass a dict of column names for keys and a list of functions for the values:
In [28]: df
Out[28]:
A B C D E GRP
0 0.395670 0.219560 0.600644 0.613445 0.242893 0
1 0.323911 0.464584 0.107215 0.204072 0.927325 0
2 0.321358 0.076037 0.166946 0.439661 0.914612 1
3 0.133466 0.447946 0.014815 0.130781 0.268290 1
In [26]: f = {'A':['sum','mean'], 'B':['prod']}
In [27]: df.groupby('GRP').agg(f)
Out[27]:
A B
sum mean prod
GRP
0 0.719580 0.359790 0.102004
1 0.454824 0.227412 0.034060
UPDATE 1:
Because the aggregate function works on Series, references to the other column names are lost. To get around this, you can reference the full dataframe and index it using the group indices within the lambda function.
Here's a hacky workaround:
In [67]: f = {'A':['sum','mean'], 'B':['prod'], 'D': lambda g: df.loc[g.index].E.sum()}
In [69]: df.groupby('GRP').agg(f)
Out[69]:
A B D
sum mean prod <lambda>
GRP
0 0.719580 0.359790 0.102004 1.170219
1 0.454824 0.227412 0.034060 1.182901
Here, the resultant 'D' column is made up of the summed 'E' values.
UPDATE 2:
Here's a method that I think will do everything you ask. First make a custom lambda function. Below, g references the group. When aggregating, g will be a Series. Passing g.index to df.ix[] selects the current group from df. I then test if column C is less than 0.5. The returned boolean series is passed to g[] which selects only those rows meeting the criteria.
In [95]: cust = lambda g: g[df.loc[g.index]['C'] < 0.5].sum()
In [96]: f = {'A':['sum','mean'], 'B':['prod'], 'D': {'my name': cust}}
In [97]: df.groupby('GRP').agg(f)
Out[97]:
A B D
sum mean prod my name
GRP
0 0.719580 0.359790 0.102004 0.204072
1 0.454824 0.227412 0.034060 0.570441
Pandas >= 0.25.0, named aggregations
Since pandas version 0.25.0 or higher, we are moving away from the dictionary based aggregation and renaming, and moving towards named aggregations which accepts a tuple. Now we can simultaneously aggregate + rename to a more informative column name:
Example:
df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
df['group'] = [0, 0, 1, 1]
a b c d group
0 0.521279 0.914988 0.054057 0.125668 0
1 0.426058 0.828890 0.784093 0.446211 0
2 0.363136 0.843751 0.184967 0.467351 1
3 0.241012 0.470053 0.358018 0.525032 1
Apply GroupBy.agg with named aggregation:
df.groupby('group').agg(
a_sum=('a', 'sum'),
a_mean=('a', 'mean'),
b_mean=('b', 'mean'),
c_sum=('c', 'sum'),
d_range=('d', lambda x: x.max() - x.min())
)
a_sum a_mean b_mean c_sum d_range
group
0 0.947337 0.473668 0.871939 0.838150 0.320543
1 0.604149 0.302074 0.656902 0.542985 0.057681
As an alternative (mostly on aesthetics) to Ted Petrou's answer, I found I preferred a slightly more compact listing. Please don't consider accepting it, it's just a much-more-detailed comment on Ted's answer, plus code/data. Python/pandas is not my first/best, but I found this to read well:
df.groupby('group') \
.apply(lambda x: pd.Series({
'a_sum' : x['a'].sum(),
'a_max' : x['a'].max(),
'b_mean' : x['b'].mean(),
'c_d_prodsum' : (x['c'] * x['d']).sum()
})
)
a_sum a_max b_mean c_d_prodsum
group
0 0.530559 0.374540 0.553354 0.488525
1 1.433558 0.832443 0.460206 0.053313
I find it more reminiscent of dplyr pipes and data.table chained commands. Not to say they're better, just more familiar to me. (I certainly recognize the power and, for many, the preference of using more formalized def functions for these types of operations. This is just an alternative, not necessarily better.)
I generated data in the same manner as Ted, I'll add a seed for reproducibility.
import numpy as np
np.random.seed(42)
df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
df['group'] = [0, 0, 1, 1]
df
a b c d group
0 0.374540 0.950714 0.731994 0.598658 0
1 0.156019 0.155995 0.058084 0.866176 0
2 0.601115 0.708073 0.020584 0.969910 1
3 0.832443 0.212339 0.181825 0.183405 1
New in version 0.25.0.
To support column-specific aggregation with control over the output column names, pandas accepts the special syntax in GroupBy.agg(), known as “named aggregation”, where
The keywords are the output column names
The values are tuples whose first element is the column to select and the second element is the aggregation to apply to that column. Pandas provides the pandas.NamedAgg namedtuple with the fields ['column', 'aggfunc'] to make it clearer what the arguments are. As usual, the aggregation can be a callable or a string alias.
>>> animals = pd.DataFrame({
... 'kind': ['cat', 'dog', 'cat', 'dog'],
... 'height': [9.1, 6.0, 9.5, 34.0],
... 'weight': [7.9, 7.5, 9.9, 198.0]
... })
>>> print(animals)
kind height weight
0 cat 9.1 7.9
1 dog 6.0 7.5
2 cat 9.5 9.9
3 dog 34.0 198.0
>>> print(
... animals
... .groupby('kind')
... .agg(
... min_height=pd.NamedAgg(column='height', aggfunc='min'),
... max_height=pd.NamedAgg(column='height', aggfunc='max'),
... average_weight=pd.NamedAgg(column='weight', aggfunc=np.mean),
... )
... )
min_height max_height average_weight
kind
cat 9.1 9.5 8.90
dog 6.0 34.0 102.75
pandas.NamedAgg is just a namedtuple. Plain tuples are allowed as well.
>>> print(
... animals
... .groupby('kind')
... .agg(
... min_height=('height', 'min'),
... max_height=('height', 'max'),
... average_weight=('weight', np.mean),
... )
... )
min_height max_height average_weight
kind
cat 9.1 9.5 8.90
dog 6.0 34.0 102.75
Additional keyword arguments are not passed through to the aggregation functions. Only pairs of (column, aggfunc) should be passed as **kwargs. If your aggregation functions requires additional arguments, partially apply them with functools.partial().
Named aggregation is also valid for Series groupby aggregations. In this case there’s no column selection, so the values are just the functions.
>>> print(
... animals
... .groupby('kind')
... .height
... .agg(
... min_height='min',
... max_height='max',
... )
... )
min_height max_height
kind
cat 9.1 9.5
dog 6.0 34.0
This is a twist on 'exans' answer that uses Named Aggregations. It's the same but with argument unpacking which allows you to still pass in a dictionary to the agg function.
The named aggs are a nice feature, but at first glance might seem hard to write programmatically since they use keywords, but it's actually simple with argument/keyword unpacking.
animals = pd.DataFrame({'kind': ['cat', 'dog', 'cat', 'dog'],
'height': [9.1, 6.0, 9.5, 34.0],
'weight': [7.9, 7.5, 9.9, 198.0]})
agg_dict = {
"min_height": pd.NamedAgg(column='height', aggfunc='min'),
"max_height": pd.NamedAgg(column='height', aggfunc='max'),
"average_weight": pd.NamedAgg(column='weight', aggfunc=np.mean)
}
animals.groupby("kind").agg(**agg_dict)
The Result
min_height max_height average_weight
kind
cat 9.1 9.5 8.90
dog 6.0 34.0 102.75
Ted's answer is amazing. I ended up using a smaller version of that in case anyone is interested. Useful when you are looking for one aggregation that depends on values from multiple columns:
create a dataframe
df = pd.DataFrame({
'a': [1, 2, 3, 4, 5, 6],
'b': [1, 1, 0, 1, 1, 0],
'c': ['x', 'x', 'y', 'y', 'z', 'z']
})
print(df)
a b c
0 1 1 x
1 2 1 x
2 3 0 y
3 4 1 y
4 5 1 z
5 6 0 z
grouping and aggregating with apply (using multiple columns)
print(
df
.groupby('c')
.apply(lambda x: x['a'][(x['a'] > 1) & (x['b'] == 1)]
.mean()
)
c
x 2.0
y 4.0
z 5.0
grouping and aggregating with aggregate (using multiple columns)
I like this approach since I can still use aggregate. Perhaps people will let me know why apply is needed for getting at multiple columns when doing aggregations on groups.
It seems obvious now, but as long as you don't select the column of interest directly after the groupby, you will have access to all the columns of the dataframe from within your aggregation function.
only access to the selected column
df.groupby('c')['a'].aggregate(lambda x: x[x > 1].mean())
access to all columns since selection is after all the magic
df.groupby('c').aggregate(lambda x: x[(x['a'] > 1) & (x['b'] == 1)].mean())['a']
or similarly
df.groupby('c').aggregate(lambda x: x['a'][(x['a'] > 1) & (x['b'] == 1)].mean())
I hope this helps.

Comparing string values from sequential rows in pandas series

I am trying to count common string values in sequential rows of a panda series using a user defined function and to write an output into a new column. I figured out individual steps, but when I put them together, I get a wrong result. Could you please tell me the best way to do this? I am a very beginner Pythonista!
My pandas df is:
df = pd.DataFrame({"Code": ['d7e', '8e0d', 'ft1', '176', 'trk', 'tr71']})
My string comparison loop is:
x='d7e'
y='8e0d'
s=0
for i in y:
b=str(i)
if b not in x:
s+=0
else:
s+=1
print(s)
the right result for these particular strings is 2
Note, when I do def func(x,y): something happens to s counter and it doesn't produce the right result. I think I need to reset it to 0 every time the loop runs.
Then, I use df.shift to specify the position of y and x in a series:
x = df["Code"]
y = df["Code"].shift(periods=-1, axis=0)
And finally, I use df.apply() method to run the function:
df["R1SB"] = df.apply(func, axis=0)
and I get None values in my new column "R1SB"
My correct output would be:
"Code" "R1SB"
0 d7e None
1 8e0d 2
2 ft1 0
3 176 1
4 trk 0
5 tr71 2
Thank you for your help!
TRY:
df['R1SB'] = df.assign(temp=df.Code.shift(1)).apply(
lambda x: np.NAN
if pd.isna(x['temp'])
else sum(i in str(x['temp']) for i in str(x['Code'])),
1,
)
OUTPUT:
Code R1SB
0 d7e NaN
1 8e0d 2.0
2 ft1 0.0
3 176 1.0
4 trk 0.0
5 tr71 2.0

Create a sequence row from a filtered series

I am trying to create a row that has columns from t0 to t(n).
I have a complete data frame (df) that stores the full set of data, and a data series (df_t) specific time markers I am interested in.
What I want is to create a row that has the time marker as t0 then the previous [sequence_length] rows from the complete data frame.
def t_data(df, df_t, col_names, sequence_length):
df_ret = pd.DataFrame()
for i in range(sequence_length):
col_names_seq = [col_name + "_" + str(i) for col_name in col_names]
df_ret[col_names_seq] = df[df.shift(i)["time"].isin(df_t)][col_names]
return df_ret
Running:
t_data(df, df_t, ["close"], 3)
I get:
close_0 close_1 close_2
1110 1.32080 NaN NaN
2316 1.30490 NaN NaN
2549 1.30290 NaN NaN
The obvious line in issue is:
df[df.shift(i)["time"].isin(df_t)][col_names]
I have tried several ways but cant seem to select data surrounding a subset.
Sample (df):
time open close high low volume EMA21 EMA13 EMA9
20 2005-01-10 04:10:00 1.3071 1.3074 1.3075 1.3070 32.0 1.306624 1.306790 1.306887
21 2005-01-10 04:15:00 1.3074 1.3073 1.3075 1.3073 16.0 1.306685 1.306863 1.306969
22 2005-01-10 04:20:00 1.3073 1.3072 1.3074 1.3072 35.0 1.306732 1.306911 1.307015
Sample (df_t):
1110 2005-01-13 23:00:00
2316 2005-01-18 03:30:00
2549 2005-01-18 22:55:00
Name: time, dtype: datetime64[ns]
I don’t have data but hope this drawing helps:
def t_data(df, df_T, n):
# Get the indexs of the original df that matches with the values of df_T
indexs = df.reset_index().merge(df_T, how="inner")['index'].tolist()
#create new index list where we will store the index-n vales
newIndex = []
#create list of values to subtract from index
toSub = np.arange(n)
#loop over index values and subtract the values, and append in newIndex
for i in indexs:
for sub in toSub:
v = i - sub
newIndex.append(v)
#Use iloc to get all the rows in the original df with the newIndex values that we want
closedCosts = df.iloc[newIndex].reset_index(drop = True)["close"].values
#concat our data back to df_T, and reshape closedCosts by n columns
df_final = pd.concat([df_T, pd.DataFrame(closedCosts.reshape(-1, n))], axis= 1)
#return final df
return df_final
This should do what you're asking for. The easiest way to do this is to figure out all the indexs that you would want from the original df with its corresponding closing value. Note: you will have to rename the columns after this, but all the values are there.

Case insensitive pandas.concat

How would I perform a case insensitive pandas.concat?
df1 = pd.DataFrame({"a":[1,2,3]},index=["a","b","c"])
df2 = pd.DataFrame({"b":[1,2,3]},index=["a","b","c"])
df1a = pd.DataFrame({"A":[1,2,3]},index=["A","B","C"])
pd.concat([df1, df2],axis=1)
a b
a 1 1
b 2 2
c 3 3
but this does not work:
pd.concat([df1, df1a],axis=1)
a A
A NaN 1
B NaN 2
C NaN 3
a 1 NaN
b 2 NaN
c 3 NaN
Is there an easy way to do this?
I have the same question for concat on a Series.
This works for a DataFrame:
pd.DataFrame([11,21,31],index=pd.MultiIndex.from_tuples([("A",x) for x in ["a","B","c"]])).rename(str.lower)
but this does not work for a Series:
pd.Series([11,21,31],index=pd.MultiIndex.from_tuples([("A",x) for x in ["a","B","c"]])).rename(str.lower)
TypeError: descriptor 'lower' requires a 'str' object but received a 'tuple'
For renaming, DataFrames use:
def rename_axis(self, mapper, axis=1):
index = self.axes[axis]
if isinstance(index, MultiIndex):
new_axis = MultiIndex.from_tuples([tuple(mapper(y) for y in x) for x in index], names=index.names)
else:
new_axis = Index([mapper(x) for x in index], name=index.name)
whereas when renaming Series:
result.index = Index([mapper_f(x) for x in self.index], name=self.index.name)
so my updated question is how to perform the rename/case insensitive concat with a Series?
You can do this via rename:
pd.concat([df1, df1a.rename(index=str.lower)], axis=1)
EDIT:
If you want to do this with a MultiIndexed Series you'll need to set it manually, for now. There's a bug report over at pandas GitHub repo waiting to be fixed (thanks #ViktorKerkez).
s.index = pd.MultiIndex.from_tuples(s.index.map(lambda x: tuple(map(str.lower, x))))
You can replace str.lower with whatever function you want to use to rename your index.
Note that you cannot use reindex in general here, because it tries to find values with the renamed index and thus it will return nan values, unless your rename results in no changes to the original index.
For the MultiIndexed Series objects, if this is not a bug, you can do:
s.index = pd.MultiIndex.from_tuples(
s.index.map(lambda x: tuple(map(str.lower, x)))
)