Vb6 Deep Count the number of properties in a UDT Object [duplicate] - vba

I have a feeling the answer to this is going to be "not possible", but I'll give it a shot...
I am in the unenviable position of modifying a legacy VB6 app with some enhancements. Converting to a smarter language isn't an option.
The app relies on a large collection of user defined types to move data around. I would like to define a common function that can take a reference to any of these types and extract the data contained.
In pseudo code, here's what I'm looking for:
Public Sub PrintUDT ( vData As Variant )
for each vDataMember in vData
print vDataMember.Name & ": " & vDataMember.value
next vDataMember
End Sub
It seems like this info needs to be available to COM somewhere... Any VB6 gurus out there care to take a shot?
Thanks,
Dan

Contrary to what others have said, it IS possible to get run-time type information for UDT's in VB6 (although it is not a built-in language feature). Microsoft's TypeLib Information Object Library (tlbinf32.dll) allows you to programmatically inspect COM type information at run-time. You should already have this component if you have Visual Studio installed: to add it to an existing VB6 project, go to Project->References and check the entry labeled "TypeLib Information." Note that you will have to distribute and register tlbinf32.dll in your application's setup program.
You can inspect UDT instances using the TypeLib Information component at run-time, as long as your UDT's are declared Public and are defined within a Public class. This is necessary in order to make VB6 generate COM-compatible type information for your UDT's (which can then be enumerated with various classes in the TypeLib Information component). The easiest way to meet this requirement would be to put all your UDT's into a public UserTypes class that will be compiled into an ActiveX DLL or ActiveX EXE.
Summary of a working example
This example contains three parts:
Part 1: Creating an ActiveX DLL project that will contain all the public UDT declarations
Part 2: Creating an example PrintUDT method to demonstrate how you can enumerate the fields of a UDT instance
Part 3: Creating a custom iterator class that allows you easily iterate through the fields of any public UDT and get field names and values.
The working example
Part 1: The ActiveX DLL
As I already mentioned, you need to make your UDT's public-accessible in order to enumerate them using the TypeLib Information component. The only way to accomplish this is to put your UDT's into a public class inside an ActiveX DLL or ActiveX EXE project. Other projects in your application that need to access your UDT's will then reference this new component.
To follow along with this example, start by creating a new ActiveX DLL project and name it UDTLibrary.
Next, rename the Class1 class module (this is added by default by the IDE) to UserTypes and add two user-defined types to the class, Person and Animal:
' UserTypes.cls '
Option Explicit
Public Type Person
FirstName As String
LastName As String
BirthDate As Date
End Type
Public Type Animal
Genus As String
Species As String
NumberOfLegs As Long
End Type
Listing 1: UserTypes.cls acts as a container for our UDT's
Next, change the Instancing property for the UserTypes class to "2-PublicNotCreatable". There is no reason for anyone to instantiate the UserTypes class directly, because it's simply acting as a public container for our UDT's.
Finally, make sure the Project Startup Object (under Project->Properties) is set to to "(None)" and compile the project. You should now have a new file called UDTLibrary.dll.
Part 2: Enumerating UDT Type Information
Now it's time to demonstrate how we can use TypeLib Object Library to implement a PrintUDT method.
First, start by creating a new Standard EXE project and call it whatever you like. Add a reference to the file UDTLibrary.dll that was created in Part 1. Since I just want to demonstrate how this works, we will use the Immediate window to test the code we will write.
Create a new Module, name it UDTUtils and add the following code to it:
'UDTUtils.bas'
Option Explicit
Public Sub PrintUDT(ByVal someUDT As Variant)
' Make sure we have a UDT and not something else... '
If VarType(someUDT) <> vbUserDefinedType Then
Err.Raise 5, , "Parameter passed to PrintUDT is not an instance of a user-defined type."
End If
' Get the type information for the UDT '
' (in COM parlance, a VB6 UDT is also known as VT_RECORD, Record, or struct...) '
Dim ri As RecordInfo
Set ri = TLI.TypeInfoFromRecordVariant(someUDT)
'If something went wrong, ri will be Nothing'
If ri Is Nothing Then
Err.Raise 5, , "Error retrieving RecordInfo for type '" & TypeName(someUDT) & "'"
Else
' Iterate through each field (member) of the UDT '
' and print the out the field name and value '
Dim member As MemberInfo
For Each member In ri.Members
'TLI.RecordField allows us to get/set UDT fields: '
' '
' * to get a fied: myVar = TLI.RecordField(someUDT, fieldName) '
' * to set a field TLI.RecordField(someUDT, fieldName) = newValue '
' '
Dim memberVal As Variant
memberVal = TLI.RecordField(someUDT, member.Name)
Debug.Print member.Name & " : " & memberVal
Next
End If
End Sub
Public Sub TestPrintUDT()
'Create a person instance and print it out...'
Dim p As Person
p.FirstName = "John"
p.LastName = "Doe"
p.BirthDate = #1/1/1950#
PrintUDT p
'Create an animal instance and print it out...'
Dim a As Animal
a.Genus = "Canus"
a.Species = "Familiaris"
a.NumberOfLegs = 4
PrintUDT a
End Sub
Listing 2: An example PrintUDT method and a simple test method
Part 3: Making it Object-Oriented
The above examples provide a "quick and dirty" demonstration of how to use the TypeLib Information Object Library to enumerate the fields of a UDT. In a real-world scenario, I would probably create a UDTMemberIterator class that would allow you to more easily iterate through the fields of UDT, along with a utility function in a module that creates a UDTMemberIterator for a given UDT instance. This would allow you to do something like the following in your code, which is much closer to the pseudo-code you posted in your question:
Dim member As UDTMember 'UDTMember wraps a TLI.MemberInfo instance'
For Each member In UDTMemberIteratorFor(someUDT)
Debug.Print member.Name & " : " & member.Value
Next
It's actually not too hard to do this, and we can re-use most of the code from the PrintUDT routine created in Part 2.
First, create a new ActiveX project and name it UDTTypeInformation or something similar.
Next, make sure that the Startup Object for the new project is set to "(None)".
The first thing to do is to create a simple wrapper class that will hide the details of the TLI.MemberInfo class from calling code and make it easy to get a UDT's field's name and value. I called this class UDTMember. The Instancing property for this class should be PublicNotCreatable.
'UDTMember.cls'
Option Explicit
Private m_value As Variant
Private m_name As String
Public Property Get Value() As Variant
Value = m_value
End Property
'Declared Friend because calling code should not be able to modify the value'
Friend Property Let Value(rhs As Variant)
m_value = rhs
End Property
Public Property Get Name() As String
Name = m_name
End Property
'Declared Friend because calling code should not be able to modify the value'
Friend Property Let Name(ByVal rhs As String)
m_name = rhs
End Property
Listing 3: The UDTMember wrapper class
Now we need to create an iterator class, UDTMemberIterator, that will allow us to use VB's For Each...In syntax to iterate the fields of a UDT instance. The Instancing property for this class should be set to PublicNotCreatable (we will define a utility method later that will create instances on behalf of calling code).
EDIT: (2/15/09) I've cleaned the code up a bit more.
'UDTMemberIterator.cls'
Option Explicit
Private m_members As Collection ' Collection of UDTMember objects '
' Meant to be called only by Utils.UDTMemberIteratorFor '
' '
' Sets up the iterator by reading the type info for '
' the passed-in UDT instance and wrapping the fields in '
' UDTMember objects '
Friend Sub Initialize(ByVal someUDT As Variant)
Set m_members = GetWrappedMembersForUDT(someUDT)
End Sub
Public Function Count() As Long
Count = m_members.Count
End Function
' This is the default method for this class [See Tools->Procedure Attributes] '
' '
Public Function Item(Index As Variant) As UDTMember
Set Item = GetWrappedUDTMember(m_members.Item(Index))
End Function
' This function returns the enumerator for this '
' collection in order to support For...Each syntax. '
' Its procedure ID is (-4) and marked "Hidden" [See Tools->Procedure Attributes] '
' '
Public Function NewEnum() As stdole.IUnknown
Set NewEnum = m_members.[_NewEnum]
End Function
' Returns a collection of UDTMember objects, where each element '
' holds the name and current value of one field from the passed-in UDT '
' '
Private Function GetWrappedMembersForUDT(ByVal someUDT As Variant) As Collection
Dim collWrappedMembers As New Collection
Dim ri As RecordInfo
Dim member As MemberInfo
Dim memberVal As Variant
Dim wrappedMember As UDTMember
' Try to get type information for the UDT... '
If VarType(someUDT) <> vbUserDefinedType Then
Fail "Parameter passed to GetWrappedMembersForUDT is not an instance of a user-defined type."
End If
Set ri = tli.TypeInfoFromRecordVariant(someUDT)
If ri Is Nothing Then
Fail "Error retrieving RecordInfo for type '" & TypeName(someUDT) & "'"
End If
' Wrap each UDT member in a UDTMember object... '
For Each member In ri.Members
Set wrappedMember = CreateWrappedUDTMember(someUDT, member)
collWrappedMembers.Add wrappedMember, member.Name
Next
Set GetWrappedMembersForUDT = collWrappedMembers
End Function
' Creates a UDTMember instance from a UDT instance and a MemberInfo object '
' '
Private Function CreateWrappedUDTMember(ByVal someUDT As Variant, ByVal member As MemberInfo) As UDTMember
Dim wrappedMember As UDTMember
Set wrappedMember = New UDTMember
With wrappedMember
.Name = member.Name
.Value = tli.RecordField(someUDT, member.Name)
End With
Set CreateWrappedUDTMember = wrappedMember
End Function
' Just a convenience method
'
Private Function Fail(ByVal message As String)
Err.Raise 5, TypeName(Me), message
End Function
Listing 4: The UDTMemberIterator class.
Note that in order to make this class iterable so that For Each can be used with it, you will have to set certain Procedure Attributes on the Item and _NewEnum methods (as noted in the code comments). You can change the Procedure Attributes from the Tools Menu (Tools->Procedure Attributes).
Finally, we need a utility function (UDTMemberIteratorFor in the very first code example in this section) that will create a UDTMemberIterator for a UDT instance, which we can then iterate with For Each. Create a new module called Utils and add the following code:
'Utils.bas'
Option Explicit
' Returns a UDTMemberIterator for the given UDT '
' '
' Example Usage: '
' '
' Dim member As UDTMember '
' '
' For Each member In UDTMemberIteratorFor(someUDT) '
' Debug.Print member.Name & ":" & member.Value '
' Next '
Public Function UDTMemberIteratorFor(ByVal udt As Variant) As UDTMemberIterator
Dim iterator As New UDTMemberIterator
iterator.Initialize udt
Set UDTMemberIteratorFor = iterator
End Function
Listing 5: The UDTMemberIteratorFor utility function.
Finally, compile the project and create a new project to test it out.
In your test projet, add a reference to the newly-created UDTTypeInformation.dll and the UDTLibrary.dll created in Part 1 and try out the following code in a new module:
'Module1.bas'
Option Explicit
Public Sub TestUDTMemberIterator()
Dim member As UDTMember
Dim p As Person
p.FirstName = "John"
p.LastName = "Doe"
p.BirthDate = #1/1/1950#
For Each member In UDTMemberIteratorFor(p)
Debug.Print member.Name & " : " & member.Value
Next
Dim a As Animal
a.Genus = "Canus"
a.Species = "Canine"
a.NumberOfLegs = 4
For Each member In UDTMemberIteratorFor(a)
Debug.Print member.Name & " : " & member.Value
Next
End Sub
Listing 6: Testing out the UDTMemberIterator class.

If you change all your Types to Classes. You have options. The big pitfall of changing from a type to a class is that you have to use the new keyworld. Every time there a declaration of a type variable add new.
Then you can use the variant keyword or CallByName. VB6 doesn't have anytype of reflection but you can make lists of valid fields and test to see if they are present for example
The Class Test has the following
Public Key As String
Public Data As String
You can then do the following
Private Sub Command1_Click()
Dim T As New Test 'This is NOT A MISTAKE read on as to why I did this.
T.Key = "Key"
T.Data = "One"
DoTest T
End Sub
Private Sub DoTest(V As Variant)
On Error Resume Next
Print V.Key
Print V.Data
Print V.DoesNotExist
If Err.Number = 438 Then Print "Does Not Exist"
Print CallByName(V, "Key", VbGet)
Print CallByName(V, "Data", VbGet)
Print CallByName(V, "DoesNotExist", VbGet)
If Err.Number = 438 Then Print "Does Not Exist"
End Sub
If you attempt to use a field that doesn't exist then error 438 will be raised. CallByName allows you to use strings to call the field and methods of a class.
What VB6 does when you declare Dim as New is quite interesting and will greatly minimize bugs in this conversion. You see this
Dim T as New Test
is not treated exactly the same as
Dim T as Test
Set T = new Test
For example this will work
Dim T as New Test
T.Key = "A Key"
Set T = Nothing
T.Key = "A New Key"
This will give a error
Dim T as Test
Set T = New Test
T.Key = "A Key"
Set T = Nothing
T.Key = "A New Key"
The reason for this is that in the first example VB6 flags T so that anytime a member is accessed it check whether the T is nothing. If it is it will automatically create a new instance of the Test Class and then assign the variable.
In the second example VB doesn't add this behavior.
In most project we rigorously make sure we go Dim T as Test, Set T = New Test. But in your case since you want to convert Types into Classes with the least amount of side effects using Dim T as New Test is the way to go. This is because the Dim as New cause the variable to mimic the way types works more closely.

#Dan,
It looks like your trying to use RTTI of a UDT. I don't think you can really get that information without knowing about the UDT before run-time.
To get you started try:
Understanding UDTs
Because of not having this reflection capability. I would create my own RTTI to my UDTs.
To give you a baseline. Try this:
Type test
RTTI as String
a as Long
b as Long
c as Long
d as Integer
end type
You can write a utility that will open every source file and add The RTTI with the name of the type to the UDT. Probably would be better to put all the UDTs in a common file.
The RTTI would be something like this:
"String:Long:Long:Long:Integer"
Using the memory of the UDT you can extract the values.

Related

Calling a function of a classmodul

probably just a stupid syntax error but when I try to call a function i created in a class module I get the error message that my "objectvarable or withblock is not declarde".
Here the minimal code example from both modules:
'calling
Dim AllZyklen1 As New ArrayList
For Each Wartungsplan In ArrayWartungsplan
Set AllZyklen1 = Wartungsplan.GetAllZyklen 'added set
next Wartungsplan
'function itself
Public Function GetAllZyklen() As ArrayList
Dim AllZyklen2 As New ArrayList
'allZyklen2 gets calculated, no other functions are called just local varaibles of the class are used
If Not AllZyklen2.Contains(Zyklus) Then
AllZyklen2.Add Zyklus
end if
Set GetAllZyklen = AllZyklen2 'added set
End Function
(numbers are added to "allzyklen" just for easier reading, they are actually both called "allzyklen" without number)
Shouldnt that work? I just cant see the error.
EDIT: As for the Solution, what the answer states is absolutley correct and was necessary for my code to work. Unfortunatley I also had an spelling error for a attribute in the classmodule. In which case vba just highlights the call of this function, but no errors within the function... I ended up moving the function from the classmodule to the main module where the correct line with the spelling error got highlighted and the mistake was easier to spot.
You need to use Set for Objects (ArrayList is an object).
So it should be:
'calling
Dim AllZyklen1 As New ArrayList
For Each Wartungsplan In ArrayWartungsplan
Set AllZyklen1 = Wartungsplan.GetAllZyklen
Next Wartungsplan
and
'function itself
Public Function GetAllZyklen() As ArrayList
Dim AllZyklen2 As New ArrayList
'allZyklen2 gets calculated, no other unctions are called just local varaibles of the class are used
Set GetAllZyklen = AllZyklen2
End Function
Full example that works:
Class Module ClassWartungsplan:
Option Explicit
Public Function GetAllZyklen() As ArrayList
Dim AllZyklen2 As New ArrayList
'allZyklen2 gets calculated, no other unctions are called just local varaibles of the class are used
AllZyklen2.Add "abc"
Set GetAllZyklen = AllZyklen2
End Function
Standard Module:
Option Explicit
Sub Example()
Dim AllZyklen1 As New ArrayList
Dim Wartungsplan As New ClassWartungsplan
Set AllZyklen1 = Wartungsplan.GetAllZyklen
Debug.Print AllZyklen1(0) ' prints ABC in the immediate window
End Sub

Is it possible to change the appearance of a custom class's object in the VBA editor's locals and watch windows? [duplicate]

Although an experienced VBA programmer it is the first time that I make my own classes (objects). I am surprised to see that all properties are 'duplicated' in the Locals Window. A small example (break at 'End Sub'):
' Class module:
Private pName As String
Public Property Let Name(inValue As String)
pName = inValue
End Property
Public Property Get Name() As String
Name = pName
End Property
' Normal module:
Sub Test()
Dim objTest As cTest
Set objTest = New cTest
objTest.Name = "John Doe"
End Sub
Why are both Name and pName shown in the Locals Window? Can I in some way get rid of pName?
As comments & answers already said, that's just the VBE being helpful.
However if you find it noisy to have the private fields and public members listed in the locals toolwindow, there's a way to nicely clean it up - here I put the Test procedure inside ThisWorkbook, and left the class named Class1:
So what's going on here? What's this?
Here's Class1:
Option Explicit
Private Type TClass1
Name As String
'...other members...
End Type
Private this As TClass1
Public Property Get Name() As String
Name = this.Name
End Property
Public Property Let Name(ByVal value As String)
this.Name = value
End Property
The class only has 1 private field, a user-defined type value named this, which holds all the encapsulated data members.
As a result, the properties' underlying fields are effectively hidden, or rather, they're all regrouped under this, so you won't see the underlying field values unless you want to see them:
And as an additional benefit, you don't need any pseudo-Hungarian prefixes anymore, the properties' implementations are crystal-clear, and best of all the properties have the exact same identifier name as their backing field.
All the Inspection windows not only show the public interface of the objects to you, but also their private members. AFAIK there is nothing you can do about it.
Consider it a nice feature to get even more insights while debugging.
In my experience this is less of an issue in real world objects as they tend to have more fields and properties. Assuming a consistent naming (as your example shows), fields and properties are nicely grouped together.
If you really dont want to see even Mathieu's This you could wrap it into a function. This is a bit more involved, and can be achieved using
a second class that stores the data in public variables. This will be marginally slower then Mattieu's implementation
a collection object that accesses the data using keys. This does not require additional clutter in the project exporer's 'class module' list but will be a little slower if you call the This repeatedly in fast sucession
An example for each is given below. If you break in the Class's Initialisation function, you can add me to the watch window and only the Name property will be listed
Using 2 Objects example
insert a classmodule and name it: InvisibleObjData
Option Explicit
Public Name As String
Public plop
Private Sub Class_Initialize()
Name = "new"
plop = 0
End Sub
insert a classmodule and name it: InvisibleObj
Option Explicit
Private Function This() As InvisibleObjData
Static p As New InvisibleObjData 'static ensures the data object persists at successive calls
Set This = p
End Function
Private Sub Class_Initialize()
This.Name = "invisible man": Debug.Print Name
Me.Name = "test": Debug.Print Name
This.plop = 111: Debug.Print This.plop
End Sub
Property Let Name(aname As String): This.Name = aname: End Property
Property Get Name() As String: Name = This.Name: End Property
'_______________________________________________________________________________________
' in the immediate window type
'
' set x=new invisibleObj
If you dont like splitting the class over two objects, a similar behaviour can be generated using a 'wrapped' collection object:
insert a classmodule and name it: InvisibleCol
Option Explicit
Private Function This() As Collection
Static p As New Collection
'static ensures the collection object persists at successive calls
'different instances will have different collections
'note a better dictionary object may help
Set This = p
End Function
Private Function add2this(s, v)
'a better dictionary object instead of the collection would help...
On Error Resume Next
This.Remove s
This.Add v, s
End Function
Private Sub Class_Initialize()
add2this "name", "invisible man": Debug.Print Name
Me.Name = "test": Debug.Print Name
add2this "plop", 111
Debug.Print This("plop") ' use the key to access your data
Debug.Print This!plop * 2 ' use of the BANG operator to reduce the number of dbl quotes
' Note: This!plop is the same as This("plop")
End Sub
Property Let Name(aname As String): add2this "name", aname: End Property
Property Get Name() As String: Name = This!Name: End Property
'_______________________________________________________________________________________
' in the immediate window type
'
' set x=new invisibleCol

Why is object reference destroyed prematurely?

I have created a simple VBA class with a parameterized constructor. The class has the VB_PredeclaredID=True. This development is being done on a Mac in Office 365. The code is below. (The code is not bulletproof. I created this simple example to show the problem that showed up in a more complex class.) When the 5th line of the Make procedure is executed, the Class_Terminate handler is invoked for the object created in the 2nd line, i.e., the one controlling the "with" block. Class_Terminate crashes on exit with an overflow error. (On my more complex example, the error is "with without end.") I've planted debug so I know the Birthday property is never called in line 5. Can someone explain to me what in my code is causing the system to want to destroy the object reference when it is still in use, and how I can work around it? Thanks.
Sub TestClass()
Dim cl As CTest
Set cl = CTest.Make(DateValue("12/6/1946"))
Debug.Print "TestClass", IIf(Not cl Is Nothing, cl.Birthday, "Nothing")
End Sub
Private m_birthday As Date
Private m_otherdata As Variant
Private Sub Class_Initialize()
Debug.Print "Enter Initialize"
If Me Is CTest Then
m_birthday = DateValue("1/1/1800")
Else
m_birthday = Now()
End If
Debug.Print "Exit Initialize", m_birthday
End Sub
Private Sub Class_Terminate()
End Sub
Public Function Make(varparam As Variant) As CTest
If Me Is CTest Then
With New CTest
Select Case VarType(varparam)
Case vbDate:
.Birthday = varparam
Case vbObject:
.Birthday = varparam.Birthday
End Select
Set Make = .Self
End With
ElseIf varparam Is Nothing Then
With New CTest
.Birthday = Me.Birthday
If (VarType(Me.OtherData)) = vbObject Then
Set .OtherData = Me.OtherData
Else
.OtherData = Me.OtherData
End If
Set Make = .Self
End With
Else
Set Make = Nothing
End If
End Function
Public Property Get Self() As CTest
Set Self = Me
End Property
Public Property Get Birthday() As Date
Birthday = m_birthday
End Property
Public Property Let Birthday(val As Date)
m_birthday = val
End Property
Public Property Get OtherData() As Variant
OtherData = m_otherdata
End Property
Public Property Let OtherData(val As Variant)
m_otherdata = val
End Property
Public Property Set OtherData(val As Variant)
Set m_otherdata = val
End Property
I created this simple example to show the problem that showed up in a more complex class
What's missing is code that consumes the class, and the code that actually reproduces the problem, but I wrote a lot of articles on this subject, so let's dig anyway.
Private Sub Class_Initialize()
Debug.Print "Enter Initialize"
If Me Is CTest Then
m_birthday = DateValue("1/1/1800")
Else
m_birthday = Now()
End If
Debug.Print "Exit Initialize", m_birthday
End Sub
A useful piece of information that you're not outputting, is whether the initializing instance is the default instance. Consider:
Debug.Print "Initializing " & TypeName(Me) & IIf(Me Is CTest, " (default instance)", vbNullString)
One problem is this:
If Me Is CTest Then
m_birthday = DateValue("1/1/1800") '<~
Else
m_birthday = Now()
End If
If the current instance is the class' default instance, the internal state is useless. Keeping the default instance stateless is key, in fact: m_birthday is an implementation detail as far as the class' default interface (CTest) is concerned. This would be a better guard clause:
If Me Is CTest Then Exit Sub
m_birthday = Now()
No more nesting, m_birthday is only assigned on a non-default instance, and the intent of keeping the default instance stateless is much more explicitly expressed.
Now, if you type this in the immediate pane:
Set a = New CTest
You'll get this output:
Initializing CTest (default instance)
Initializing CTest
You're missing this trace:
Private Sub Class_Terminate()
Debug.Print "Terminating " & TypeName(Me) & IIf(Me Is CTest, " (default instance)", vbNullString)
End Sub
In the Make factory method, you actually want an even stronger bail-out:
Public Function Make(varparam As Variant) As CTest
If Me Is CTest Then
'...
Consider:
Public Function Make(varparam As Variant) As CTest
If Not Me Is CTest Then Err.Raise 5, TypeName(Me), "Member call is only valid from default/predeclared instance."
And that removes a branch in the conditional path. It also makes me wonder about this:
ElseIf varparam Is Nothing Then
That condition gets evaluated when Me Is CTest is False, i.e. when the factory method is invoked from a user instance... and that should not be allowed to happen.
This is another problem:
Select Case VarType(varparam)
Case vbDate:
.Birthday = varparam
Case vbObject:
.Birthday = varparam.Birthday
vbObject means varparam is an Object reference - not that it's a CTest object: because we're working with a Variant, the member call is late-bound, so if the object doesn't have a Birthday member, we have run-time error 438 raised here. We can keep the member call late-bound but still validate the type:
Case vbObject:
If TypeOf varparam Is CTest Then .Birthday = varparam.Birthday
Or you can get compile-time validation by introducing a variable:
Case vbObject:
Dim typedParam As CTest
If TypeOf varparam Is CTest Then
Set typedParam = varparam
.Birthday = typedParam.Birthday '<~ early-bound member call now
End If
This not only helps the compiler pick up typos (even Option Explicit can't save you from a typo in a late-bound call), it also helps static code analysis tooling like Rubberduck, that now "see" the member call: if the member is renamed, refactoring tools can now update this call site - that's not easily possible with late-bound code.
Public Property Get Self() As CTest
Set Self = Me
End Property
That's syntax sugar that works nicely when there's an explicit interface involved, to cleanly separate the stateless CTest default instance from the ICTest explicit client interface (which could include a Property Get for the birthday, but no Let accessor).
Better syntax sugar that doesn't affect your classes' public interfaces and dramatically cleans up the locals toolwindow in class modules, is shoving the instance state into a Private Type:
Private Type TState
Birthday As Date
OtherData As Variant '<~ note: this breaks strong-typing and gets you back into late-bound land.
End Type
Private this As TState
This Private this instance (module-level) variable replaces all m_-prefixed variables, and now the Birthday property reads like this:
Public Property Get Birthday() As Date
Birthday = this.Birthday
End Property
Public Property Let Birthday(ByVal val As Date)
this.Birthday = val
End Property
...
So, the only convoluted piece of code that looks suspect, is the Make function, which is responsible for too many things.
Write a separate private function that works off a Date, another that works off a CTest object, and conditionally invoke the appropriate one from Make.
With functions that do fewer things, fewer things can go wrong.
Guard your methods - if a method involves instance state, prohibit invoking it from the default/predeclared instance. If a method is supposed to be invoked from the default instance, prohibit calling it from other instances.
See this article for a refresher on the pattern, and this one to see it in action with real code.
I have to doff my cap to #MathieuGuindon and the other chaps and chapesses at Rubberduck as my understanding of VBA has progressed immensely through reading the Rubberduck blogs.
I too have been through some interesting times using the PredeclaredId and therfore offer some of my thoughts on how the OP code should be constructed. As I am still developing my understanding of OOP in VBA folks should feel free to shoot me down in flames if I am wrong or misunderstanding things.
There are two things that I have developed from ideas presented in the rubberduck blogs.
This
I differentiate 'this' into p,s,b and u representing Type definitions of Properties, State,BaseInstance and Using.
Self
I take the construction of a Class instance a step further and pass the Make parameters to the Self method call. In this way the parameters can be used to set up private members of the new instance without the need for public properties.
Option Explicit
Sub TestCTest()
Dim myCTest As CTest
' no errors
Set myCTest = CTest.Make(DateValue("4/6/2020"))
Debug.Print myCTest.Birthday
On Error Resume Next
' Gives "CTest: Expecting Variant/Date or Variant/CTest: Found String"
Set myCTest = CTest.Make("4/6/2020")
Debug.Print Err.Description
On Error GoTo 0
On Error Resume Next
Dim myCtest2 As CTest
'Gives "CTest: Make should only be used with the PredeclaredId"
Set myCtest2 = myCTest.Make(DateValue("4/6/2020"))
Debug.Print Err.Description
On Error GoTo 0
On Error Resume Next
' Gives "New is not permitted outside of the Make Method" error
Dim myCtest3 As CTest
Set myCtest3 = New CTest
Debug.Print Err.Description
On Error GoTo 0
End Sub
Class CTest
Option Explicit
'#PredeclaredId
' Variables used as the private repositories for public properties are located here
Private Type Properties
Birthday As Date
OtherData As Variant ' OP may have a specific type in mind
' NewIsAllowed appears in every instance but we will only ever use
' the value in the predeclared Id to toggle if new is or is not allowed
' via the AllowNew property
NewIsAllowed As Boolean
End Type
Private p As Properties
' If any were present the State type would be used for variables representing
' the state of the instance but which are not intended to be made public through Properties
' Private Type State
' StateVar1 as Typename
' End Type
'
' Private s As State
'
' Used only for PredeclaredId to allow boilerplate code to be written
Private Type BaseInstance
PredeclaredId As CTest
End Type
Private b As BaseInstance
Private Sub Class_Initialize()
' This method runs the **first** time the **PredecalredID** is used in an expression
' and for every subsequent use of New. Therefore managing what happens for the PredeclaredId
' vs instances can become a bit Eulerish.
' Declaring b.predeclaredId allows us to boilerplate code elsewhere
' as it means that the only places that the actual class name is used
' is here ,the Type declaration above and other method declarations.
Set b.PredeclaredId = CTest
' The code to exit on the first use of the PredeclaredID in an expression
If Me Is b.PredeclaredId Then Exit Sub
' Trap the use of New when not used by the Make Function
' the code below means that bad code will be detected at testing time
If Not AllowNew Then
Err.Raise 445 + vbObjectError, TypeName(Me), TypeName(Me) & ": New is not permitted outside of the Make method"
End If
End Sub
Public Function Make(ByVal varparam As Variant) As CTest
' From the OP code we are expecting varparam to be either
' a Date , a CTest object or nothing
If InStr("Date,CTest,Empty,Null,Nothing", TypeName(varparam)) = 0 Then
Err.Raise 13 + vbObjectError, TypeName(Me), TypeName(Me) & ": Expecting Variant/Date or Variant/CTest: Found " & TypeName(varparam)
End If
' In the OP code it is not clear if the OP has
' restricted the use of the Make function to CTest.Make or
' allows the use of <instance>.Make.
' Both uses are legal as Make is a public method but
' in the spirit of declaring a PredecalredId it is
' preferable to restrict the use of Make to CTest.Make
' Thus the code below detects the use of Make by an instance.
If Not Me Is b.PredeclaredId Then
Err.Raise 445 + vbObjectError, TypeName(Me), TypeName(Me) & ": Make should only be used with the PredeclaredId"
End If
' Instruct the PredeclaredId that New is allowed
AllowNew = True
With New CTest
Set Make = .Self(varparam)
End With
' Instruct the PredeclaredId to disallow the use of new
AllowNew = False
End Function
Public Function Self(ByVal varparam As Variant) As CTest
' This code is inside the new instance that is being constructed.
' Therefore there is free access to the private variables of the
' instance 'under construction'
' Its a little difficult to untangle the OP logic for what constitutes
' the birthday so the Case statement below may well be incorrect
Select Case TypeName(varparam)
Case "Empty", "Null", "Nothing"
' The Me in the OP code occurs in the Make function and
' consequently refers to the instance of which Make was called.
' IF make was used as discussed above this implies that Me is b.PredecalredId
' only if the OP has adhered to CTest.Make
' If this is the case????
p.Birthday = DateValue("1/1/1800")
' The OP assigns otherdata in the case of nothing
' using Me.Otherdata. The Me will now refer to the
' the instance under construction so it is likely that a second
' parameter will be required for the Make function
'
Case "Date"
p.Birthday = CDate(varparam)
Case "CTest"
Dim myCTest As CTest
Set myCTest = varparam
p.Birthday = myCTest.Birthday
Case Else
Err.Raise 13 + vbObjectError, TypeName(Me), TypeName(Me) & ": Expecting Variant/Date or Variant/CTest: Found " & TypeName(varparam)
End Select
Set Self = Me
End Function
' The alternative to the AllowNew property is to have a public AllowNew field.
' but as the code below is bolerplate and can be copied to new classes without issue
' I'm happy to use the code below.
' Due to the differentiation of p,s,b
' we have an easily identifiable warning to check if we
' see anything but the p. prefix in Property declarations.
Public Property Get AllowNew() As Boolean
If Me Is b.PredeclaredId Then
AllowNew = p.NewIsAllowed
Else
AllowNew = b.PredeclaredId.AllowNew
End If
End Property
Public Property Let AllowNew(ByVal Value As Boolean)
If Me Is b.PredeclaredId Then
p.NewIsAllowed = Value
Else
b.PredeclaredId.AllowNew = Value
End If
End Property
Public Property Get Birthday() As Date
Birthday = p.Birthday
End Property
Public Property Let Birthday(ByVal val As Date)
p.Birthday = val
End Property
Public Property Get OtherData() As Variant
OtherData = p.OtherData
End Property
Public Property Let OtherData(ByVal val As Variant)
p.OtherData = val
End Property
Public Property Set OtherData(ByVal val As Variant)
Set p.OtherData = val
End Property

VBA Class with Collection of itself

I'm trying to create a class with a Collection in it that will hold other CASN (kind of like a linked list), I'm not sure if my instantiation of the class is correct. But every time I try to run my code below, I get the error
Object variable or With block not set
CODE BEING RUN:
If (Numbers.count > 0) Then
Dim num As CASN
For Each num In Numbers
If (num.DuplicateOf.count > 0) Then 'ERROR HERE
Debug.Print "Added " & num.REF_PO & " to list"
ListBox1.AddItem num.REF_PO
End If
Next num
End If
CLASS - CASN:
Private pWeek As String
Private pVendorName As String
Private pVendorID As String
Private pError_NUM As String
Private pREF_PO As Variant
Private pASN_INV_NUM As Variant
Private pDOC_TYPE As String
Private pERROR_TEXT As String
Private pAddressxl As Range
Private pDuplicateOf As Collection
'''''''''''''''' Instantiation of String, Long, Range etc.
'''''''''''''''' Which I know is working fine
''''''''''''''''''''''
' DuplicateOf Property
''''''''''''''''''''''
Public Property Get DuplicateOf() As Collection
Set DuplicateOf = pDuplicateOf
End Property
Public Property Let DuplicateOf(value As Collection)
Set pDuplicateOf = value
End Property
''''' What I believe may be the cause
Basically what I've done is created two Collections of class CASN and I'm trying to compare the two and see if there are any matching values related to the variable .REF_PO and if there is a match I want to add it to the cthisWeek's collection of class CASN in the DuplicateOf collection of that class.
Hopefully this make sense... I know all my code is working great up to this point of comparing the two CASN Collection's. I've thoroughly tested everything and tried a few different approaches and can't seem to find the solution
EDIT:
I found the error to my first issue but now a new issue has appeared...
This would be a relatively simple fix to your Get method:
Public Property Get DuplicateOf() As Collection
If pDuplicateOf Is Nothing Then Set pDuplicateOf = New Collection
Set DuplicateOf = pDuplicateOf
End Property
EDIT: To address your question - "So when creating a class, do I want to initialize all values to either Nothing or Null? Should I have a Class_Terminate as well?"
The answer would be "it depends" - typically there's no need to set all your class properties to some specific value: most of the non-object ones will already have the default value for their specific variable type. You just have to be aware of the impact of having unset variables - mostly when these are object-types.
Whether you need a Class_Terminate would depend on whether your class instances need to perform any "cleanup" (eg. close any open file handles or DB connections) before they get destroyed.

Polymorphic Behavior in VB6

I recently noticed the CallByName keyword in VB6.
Since this takes a object, procedure name, "call type" and arguments array, can this be used to "fake" some types of polymorphic behavior?
I can make 2 classes, class A and B, each with the same method Foo, and do:
Dim list As New Collection
Dim instanceA As New ClassA
Dim instanceB As New ClassB
Dim current As Object
Call list.Add(instanceA)
Call list.Add(instanceB)
For Each current in list
Call CallByName(current, "methodName", vbMethod)
Next
Anyone done this before? Problems? Horrible idea or genius idea? Implications? Unintended consequences?
Why fake polymorphism? VB6 has real polymorphism in the form of interfaces:
' Interface1.cls '
Sub Foo()
End Sub
' --------------------------------------------- '
' Class1.cls '
Implements Interface1
Private Sub Interface1_Foo()
? "Hello from class 1"
End Sub
' --------------------------------------------- '
' Class2.cls '
Implements Interface1
Private Sub Interface1_Foo()
? "Hello from class 2"
End Sub
' --------------------------------------------- '
' Module1.mod '
Dim x As Interface1
Set x = New Class1
Call x.Foo()
Set x = New Class2
Call x.Foo()
Although I agree with Mr. unicorn, I can't help but point out that CallByName is also unnecessary (in this case) because you can call the method using the standard method syntax and it will result in a late-bound (i.e. not resolved at compile-time) call:
...
For Each current In list
Call current.methodName
Next
The real use of CallByName is to reference method names/properties where the name comes from a (possibly calculated) string value...an absolute abomination, in my opinion.
If you are in a situation where you inherited a huge project with not a single interface in it (it sounds like you did), then CallByName is an awesome tool to fake polymorphism. I use it all the time - never had any issues whatsoever.