How to query NVIDIA GPU parameters for a certain PID? - process

I know with nvidia-smi an overview is generated like:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.66 Driver Version: 375.66 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Quadro P4000 Off | 0000:01:00.0 Off | N/A |
| N/A 43C P0 26W / N/A | 227MiB / 8114MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1724 G /usr/bin/X 219MiB |
| 0 8074 G qtcreator 6MiB |
+-----------------------------------------------------------------------------+
However, for the parameters I'd like to break it down for each process (e.g. GPU usage, used memory). I can't find a respective query, but then again I can't imagine that such a basic function is not implemented. Hence
Is there an easy way to display the GPU parameters for each process?

I don't think it gets any closer to nvidia-smi pmon:
# gpu pid type sm mem enc dec fb command
# Idx # C/G % % % % MB name
0 1750 G 1 0 0 0 179 X
0 3734 G 0 0 0 0 7 qtcreator

Related

CUDA_ERROR_UNKNOWN: unknown error in Colab instance

I'm connected to Google Colab through SSH (using this method). I get the following error when trying to use the GPU.
python lstm_example.py
Num GPUs Available: 1
(25000,)
(25000,)
2022-03-21 12:43:53.301917: W tensorflow/stream_executor/cuda/cuda_driver.cc:374] A non-primary context 0x559ed434d210 for device 0 exists before initializing the StreamExecutor. The primary context is now 0. We haven't verified StreamExecutor works with that.
2022-03-21 12:43:53.302331: F tensorflow/core/platform/statusor.cc:33] Attempting to fetch value instead of handling error INTERNAL: failed initializing StreamExecutor for CUDA device ordinal 0: INTERNAL: failed call to cuDevicePrimaryCtxRetain: CUDA_ERROR_UNKNOWN: unknown error
Aborted (core dumped)
GPU info
nvidia-smi
Mon Mar 21 13:00:24 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.54 Driver Version: 460.32.03 CUDA Version: 11.6 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla K80 Off | 00000000:00:04.0 Off | 0 |
| N/A 50C P0 59W / 149W | Function Not Found | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
/usr/local/cuda/bin/nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Oct_12_20:09:46_PDT_2020
Cuda compilation tools, release 11.1, V11.1.105
Build cuda_11.1.TC455_06.29190527_0
I've added the following lines
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
The same code works when run in a notebook cell. I also notice that Memory_Usage is available when running nvidia-smi from a notebook and the CUDA version used is different (11.2).
Tue Mar 22 10:52:20 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla K80 Off | 00000000:00:04.0 Off | 0 |
| N/A 43C P8 31W / 149W | 3MiB / 11441MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-

Using GPU for reinforcement learning with Keras

I am using this code (please excuse its messiness) to run on my CPU. I have a custom RL environment that I have created myself and I am using DQN agent.
But when I run this code on GPU, it doesn't utilize much of it and in fact it is slower than my CPU.
This is the output of nvidia-smi. As you can see my processes are running on GPU but the speed is much slower than I would expect.
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.82 Driver Version: 440.82 CUDA Version: 10.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 TITAN Xp Off | 00000000:00:05.0 Off | N/A |
| 23% 37C P2 60W / 250W | 11619MiB / 12196MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 TITAN Xp Off | 00000000:00:06.0 Off | N/A |
| 23% 29C P8 9W / 250W | 157MiB / 12196MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 25540 C python3 11609MiB |
| 1 25540 C python3 147MiB |
+-----------------------------------------------------------------------------+
Can anyone point out what can I do to change my code for GPU capabilities?
PS: Notice that I have two GPUs and my process is running on both of them. Even if I use any one of two GPUs, the issue is that my GPU is not utilized and the speed is comparatively slower than GPU so two GPUs is not the issue

CUDA_ERROR_OUT_OF_MEMORY during tf export mode despite turning gpu completely off already

I am currently running a few Tensorflow training jobs with gpu and am trying to export models from one such job. I have set
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
both in code and in terminal. Also I have removed all mentions of gpu devices in the training code, as well as moved graph.pbtxt away. I used inspect_checkpoint.py to see that the model checkpoint keys contain no mention of gpu either. I have also set
session_config = tf.ConfigProto(
device_count={'GPU': 0 if export else config.num_gpus},
allow_soft_placement=True,
gpu_options=None if export else tf.GPUOptions(allow_growth=True))
Still I am getting the following error message towards the end of export:
2018-09-15 03:20:30.597742: E
tensorflow/core/common_runtime/direct_session.cc:158] Internal: failed
initializing StreamExecutor for CUDA device ordinal 0: Internal: failed
call to cuDevicePrimaryCtxRetain: CUDA_ERROR_OUT_OF_MEMORY; total memory
reported: 16936861696
nvidia-smi | head -20
Sat Sep 15 03:25:28 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.130 Driver Version: 384.130 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla V100-PCIE... Off | 00000000:02:00.0 Off | 0 |
| N/A 35C P0 50W / 250W | 15800MiB / 16152MiB | 89% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla V100-PCIE... Off | 00000000:04:00.0 Off | 0 |
| N/A 35C P0 37W / 250W | 0MiB / 16152MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla V100-PCIE... Off | 00000000:83:00.0 Off | 0 |
| N/A 36C P0 37W / 250W | 0MiB / 16152MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla V100-PCIE... Off | 00000000:84:00.0 Off | 0 |
| N/A 38C P0 39W / 250W | 0MiB / 16152MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

How to access to GPUs on different nodes in a cluster with Slurm?

I have access to a cluster that's run by Slurm, in which each node has 4 GPUs.
I have a code that needs 8 gpus.
So the question is how can I request 8 gpus on a cluster that each node has only 4 gpus?
So this is the job that I tried to submit via sbatch:
#!/bin/bash
#SBATCH --gres=gpu:8
#SBATCH --nodes=2
#SBATCH --mem=16000M
#SBATCH --time=0-01:00
But then I get the following error:
sbatch: error: Batch job submission failed: Requested node configuration is not available
Then I changed my the settings to this and submitted again:
#!/bin/bash
#SBATCH --gres=gpu:4
#SBATCH --nodes=2
#SBATCH --mem=16000M
#SBATCH --time=0-01:00
nvidia-smi
and the result shows only 4 gpus not 8.
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.66 Driver Version: 375.66 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla P100-PCIE... Off | 0000:03:00.0 Off | 0 |
| N/A 32C P0 31W / 250W | 0MiB / 12193MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla P100-PCIE... Off | 0000:04:00.0 Off | 0 |
| N/A 37C P0 29W / 250W | 0MiB / 12193MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla P100-PCIE... Off | 0000:82:00.0 Off | 0 |
| N/A 35C P0 28W / 250W | 0MiB / 12193MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla P100-PCIE... Off | 0000:83:00.0 Off | 0 |
| N/A 33C P0 26W / 250W | 0MiB / 12193MiB | 4% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
Thanks.
Slurm does not support what you need. It only can assign to your job GPUs/node, not GPUs/cluster.
So, unlike CPUs or other consumable resources, GPUs are not consumable and are binded to the node where they are hosted.
If you are interested in this topic, there is a research effort to turn GPUs into consumable resources, check this paper.
There you'll find how to do it using GPU virtualization technologies.
Job script: You are requesting 2 nodes with each of them 4 GPUs. Tolal 8 GPUs are assigned to you. You are running "nvidia-smi". nvidia-smi does not aware of SLURM nor MPI. It runs only on first node assigned to you. So it shows only 4 GPUs, result is normal.
If you run GPU based engineering application like Ansys HFSS or CST, They can use all 8 GPUs.

GPU load in tensorflow

I just built TensorFlow v1.0 and I am trying to run MNIST test just to see if it's working. Seems like it is, but i am observing weird behaiviour.
My system has two Tesla P100, and nvidia-smi shows the following:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 361.107 Driver Version: 361.107 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla P100-SXM2... Off | 0002:01:00.0 Off | 0 |
| N/A 34C P0 114W / 300W | 15063MiB / 16280MiB | 51% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla P100-SXM2... Off | 0006:01:00.0 Off | 0 |
| N/A 27C P0 35W / 300W | 14941MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 67288 C python3 15061MiB |
| 1 67288 C python3 14939MiB |
+-----------------------------------------------------------------------------+
As it shown, python3 ate all the memory on both GPUs, but computational load are placed only on first.
Exporting CUDA_VISIBLE_DEVICES I can limit GPU to be used, but it's not affect computational time. So no gain from adding second GPU. Single GPU
real 2m23.496s
user 4m26.597s
sys 0m12.587s
Two GPUs:
real 2m18.165s
user 4m18.625s
sys 0m12.958s
So the question is, how to load both GPUs?