How to properly model a Master/Main/Detail kind of relation - sql

The relationship I wanna model goes kinda like this:
A master TextResource object that stores high level shared non-localizable data, like maximum length.
One single detail object we can call SourceText, that needs to be tracked separately.
The rest of detail objects, that we can call TargetText.
Both Source and TargetText objects store a string localized in a particular language, along with other localization data.
But the string stored in SourceText is the original one and hence, even if the data schema is the same, they're not functionally equal and this piece of data needs to exist and be unique per each TextResource master object.
And the options I've thought of are:
Regular master-detail tables, but store the SourceText ID in the master table... Potentially creating a circular reference?
Regular master-detail tables, but add a flag/category column to the detail table that marks a row as Source or Target... Though this could potentially lead to having more than one "Source" detail per master and could make querying for the Source data less straight-forward
Store the Source data in the master table, even if this means having similar columns on both master and detail tables (and screwing normalization while at it)
Create three different tables: master, main and detail. Master (TextResource) and main (SourceText) would have a 1-to-1 relationship while there could be n detail (TargetText) rows per master, but other than that the Source and Target tables would share most of their schema
I see benefits and potential problems on all four approaches, so maybe you could lend me a hand deciding one?
What I want to achieve would boil down to:
Have one, and only one, Source string per Resource
Be able to query Text Resources and their Source strings easily and fast
Be able to query the localized strings of a given Resource, including the Source one, easily and fast
Be able to store versioned data of each localized string, including the Source one
And of course, avoid bad practices and observe normalization
Thanks in advance :)

Related

Modelling entities with states in sql where the entity has more attributes as it advances a state (Hibernate)

I need to be able to model a single entity that can be in different states. The issue is that in each state the entity has more fields attributed to it.
In my case I have a Match entity which has the states "pending", "ready", "running" and "finished". A pending match hold the date and time the match is to commence and what server it will be hosted on, a ready match holds the teams who will be competing in the match, a running match holds the live scores of the match as it's running and the finished match will hold the time the match finished and the winner.
Summarising, the match entity goes through a sort of pipeline where at different stages, new fields are added to it.
One approach is to have one big Match table with all the fields for all states that get filled in as the match advances a state. This would mean the table would have many null values, but they would all eventually get filled by the time the match is in its final state.
Another is to have a table for each of the matches stage (PendingMatch, ReadyMatch, RunningMatch... etc.) with only the fields relevant to each stage. Since i'm using hibernate, each state would have its own class so when a match is loaded you can only access the fields relevant to that state. The issue with this method however is that I would be repeating columns across tables and in order to advance the matches state, I would have to pop it from its current table and insert it into the next table with the new data for that state.
Neither solution seems ideal, but I cant see any other way of modelling this.
I'm sure this is a common problem, but since the exact description of the is such a mouthful its very difficult to find anything on it!
If anyone could explain which approach is best or perhaps a totally new approach that would be appreciated.
Thanks in advance!
Yepadee
p.s. I'm using hibernate ORM tool to model this

Accepted methodology when using multiple Sqlite databases

Question
What is the accepted way of using multiple databases that record information about the same object that will ultimately end up living in one central database?
Example
There is one main SQL database about trees.
This database holds information about unique trees from all over the UK.
To collect the information a blank Sqlite database is created (with the same schema) and taken to the tree on a phone.
The collected information is then stored in the Sqlite database until it is brought back to the main database, Where it is then transferred into the main database.
Now this works fine as long as there is only one Sqlite database out for any one tree at a time.
However, if two people wanted to collect different information for the same tree at the same time, when they both came back and attempted to transfer their data in to the main database, there would be collisions on their primary key constraints.
ID Schemes (with example data)
There is a tree table which has unique identifier called treeID
TreeID - TreeName - Location
1001 - Teddington Field - Plymouth
Branch table
BranchID - BranchName - TreeID
1001-10001 - 1st Branch - 1001
1001-10002 - 2nd Branch -1001
Leave table
LeafID - LeafName - BranchId
1001-10001-1 - Bedroom - 1001-10001
1001-10002-2 - Bathroom - 1001-10001
Possible ideas
Assign each database 1000 unique ID's and then one they come back in as the ids have already been assigned the ids on each database won't collide.
Downfall
This isn't very dynamic and could fail if one database overruns on its preassigned ids.
Is there another way to achieve the same flexibility but with out the downfall mentioned above?
So, as an answer:
on the master db, store an extra id field identifying the source/collection database that the dataset was collected on, as well as the tree id.
(src01, 1001), (src02, 1001)
This also allows you to link back easily to the collection source of the information which is likely gonna be a future requirement. Now, you may or may not want to autogenerate another sequence id key value on the master db's table (I wouldn't but that's because I am not that fond of surrogate keys), but I would definitely keep track of the source/treeid it was originally collected with in the field, separately of any master db unique key considerations.
Apparently you are talking about auto-generated IDs for related objects, not the IDs for the trees themselves. Two different people collecting information about the same tree, starting from the same starting set, end up generating the same IDs independently. The two sets of generated IDs cannot coexist in the same DB.
Since you want to keep all the new data. One possible solution is to avoid using the field-generated IDs in the central database at all. When each set of data comes in, take the data that were added in the field, and programmatically add them to the central DB in a way equivalent to how they are added in the field, letting the central DB autogenerate its own IDs.
This requires a mechanism to distinguish newly-collected data from old, but that might be as simple as a timestamp.

SQL vs NoSQL for data that will be presented to a user after multiple filters have been added

I am about to embark on a project for work that is very outside my normal scope of duties. As a SQL DBA, my initial inclination was to approach the project using a SQL database but the more I learn about NoSQL, the more I believe that it might be the better option. I was hoping that I could use this question to describe the project at a high level to get some feedback on the pros and cons of using each option.
The project is relatively straightforward. I have a set of objects that have various attributes. Some of these attributes are common to all objects whereas some are common only to a subset of the objects. What I am tasked with building is a service where the user chooses a series of filters that are based on the attributes of an object and then is returned a list of objects that matches all^ of the filters. When the user selects a filter, he or she may be filtering on a common or subset attribute but that is abstracted on the front end.
^ There is a chance, depending on user feedback, that the list of objects may match only some of the filters and the quality of the match will be displayed to the user through a score that indicates how many of the criteria were matched.
After watching this talk by Martin Folwler (http://www.youtube.com/watch?v=qI_g07C_Q5I), it would seem that a document-style NoSQL database should suit my needs but given that I have no experience with this approach, it is also possible that I am missing something obvious.
Some additional information - The database will initially have about 5,000 objects with each object containing 10 to 50 attributes but the number of objects will definitely grow over time and the number of attributes could grow depending on user feedback. In addition, I am hoping to have the ability to make rapid changes to the product as I get user feedback so flexibility is very important.
Any feedback would be very much appreciated and I would be happy to provide more information if I have left anything critical out of my discussion. Thanks.
This problem can be solved in by using two separate pieces of technology. The first is to use a relatively well designed database schema with a modern RDBMS. By modeling the application using the usual principles of normalization, you'll get really good response out of storage for individual CRUD statements.
Searching this schema, as you've surmised, is going to be a nightmare at scale. Don't do it. Instead look into using Solr/Lucene as your full text search engine. Solr's support for dynamic fields means you can add new properties to your documents/objects on the fly and immediately have the ability to search inside your data if you have designed your Solr schema correctly.
I'm not an expert in NoSQL, so I will not be advocating it. However, I have few points that can help you address your questions regarding the relational database structure.
First thing that I see right away is, you are talking about inheritance (at least conceptually). Your objects inherit from each-other, thus you have additional attributes for derived objects. Say you are adding a new type of object, first thing you need to do (conceptually) is to find a base/super (parent) object type for it, that has subset of the attributes and you are adding on top of them (extending base object type).
Once you get used to thinking like said above, next thing is about inheritance mapping patterns for relational databases. I'll steal terms from Martin Fowler to describe it here.
You can hold inheritance chain in the database by following one of the 3 ways:
1 - Single table inheritance: Whole inheritance chain is in one table. So, all new types of objects go into the same table.
Advantages: your search query has only one table to search, and it must be faster than a join for example.
Disadvantages: table grows faster than with option 2 for example; you have to add a type column that says what type of object is the row; some rows have empty columns because they belong to other types of objects.
2 - Concrete table inheritance: Separate table for each new type of object.
Advantages: if search affects only one type, you search only one table at a time; each table grows slower than in option 1 for example.
Disadvantages: you need to use union of queries if searching several types at the same time.
3 - Class table inheritance: One table for the base type object with its attributes only, additional tables with additional attributes for each child object type. So, child tables refer to the base table with PK/FK relations.
Advantages: all types are present in one table so easy to search all together using common attributes.
Disadvantages: base table grows fast because it contains part of child tables too; you need to use join to search all types of objects with all attributes.
Which one to choose?
It's a trade-off obviously. If you expect to have many types of objects added, I would go with Concrete table inheritance that gives reasonable query and scaling options. Class table inheritance seems to be not very friendly with fast queries and scalability. Single table inheritance seems to work with small number of types better.
Your call, my friend!
May as well make this an answer. I should comment that I'm not strong in NoSQL, so I tend to lean towards SQL.
I'd do this as a three table set. You will see it referred to as entity value pair logic on the web...it's a way of handling multiple dynamic attributes for items. Lets say you have a bunch of products and each one has a few attributes.
Prd 1 - a,b,c
Prd 2 - a,d,e,f
Prd 3 - a,b,d,g
Prd 4 - a,c,d,e,f
So here are 4 products and 6 attributes...same theory will work for hundreds of products and thousands of attributes. Standard way of holding this in one table requires the product info along with 6 columns to store the data (in this setup at least one third of them are null). New attribute added means altering the table to add another column to it and coming up with a script to populate existing or just leaving it null for all existing. Not the most fun, can be a head ache.
The alternative to this is a name value pair setup. You want a 'header' table to hold the common values amoungst your products (like name, or price...things that all rpoducts always have). In our example above, you will notice that attribute 'a' is being used on each record...this does mean attribute a can be a part of the header table as well. We'll call the key column here 'header_id'.
Second table is a reference table that is simply going to store the attributes that can be assigned to each product and assign an ID to it. We'll call the table attribute with atrr_id for a key. Rather straight forwards, each attribute above will be one row.
Quick example:
attr_id, attribute_name, notes
1,b, the length of time the product takes to install
2,c, spare part required
etc...
It's just a list of all of your attributes and what that attribute means. In the future, you will be adding a row to this table to open up a new attribute for each header.
Final table is a mapping table that actually holds the info. You will have your product id, the attribute id, and then the value. Normally called the detail table:
prd1, b, 5 mins
prd1, c, needs spare jack
prd2, d, 'misc text'
prd3, b, 15 mins
See how the data is stored as product key, value label, value? Any future product added can have any combination of any attributes stored in this table. Adding new attributes is adding a new line to the attribute table and then populating the details table as needed.
I beleive there is a wiki for it too... http://en.wikipedia.org/wiki/Entity-attribute-value_model
After this, it's simply figuring out the best methodology to pivot out your data (I'd recommend Postgres as an opensource db option here)

Table design for hierarchical data

i am trying to design a table which contains sections and each section contains tasks and each task contains sub tasks and so on. I would like to do it under one table. Please let me know the best single table approach which is scalable. I am pretty new to database design. Also please suggest if single table is not the best approach then what could be the best approach to do this. I am using db2.
Put quite simply, I would say use 1 table for tasks.
In addition to all its various other attributes, each task should have a primary identifier, and another column to optionally contain the identifier of its parent task.
If you are using DB2 for z/OS, then you will use a recursive query with a common table expression. Otherwise you you can use a hierarchical recursive query in DB2 for i, or possibly in DB2 for LUW (Linux, Unix, Windows).
Other designs requiring more tables, each specializing in a certain part of the task:subtask relationship, may needlessly introduce issues or limitations.
There are a few ways to do this.
One idea is to use two tables: Sections and Tasks
There could be a one to many relationship between the two. The Task table could be designed as a tree with a TaskId and a ParentTaksId which means you can have Tasks that go n-levels deep (sub tasks of sub tasks og sub tasks etc). Every Task except for the root task will have a parent.
I guess you can also solve this by using a single table where you just add a section column to the Task table I described above.
If you are going to put everything into one table although convenient will be inefficient in the long run. This would mean you will be storing unnecessary repeated groups of data in your database which would not be processor and memory friendly at all. It would in fact violate the Normalization rules and to be more specific the 1st Normal Form which says that there should be no repeating groups that could be found in your table. And it would actually also violate the 3rd Normal Form which means there will be no (transitional) dependency of a non-primary key to another non-primary key.
To give you an illustration, I will put your design into one table. Although I will be guessing on the possible fields but just bear with it because this is for the sake of discussion. Look at the graphics below:
If you look the graphics above (although this is rather small you could download the image and see it closer for yourself), the SectionName, Taskname, TaskInitiator, TaskStartDate and TaskEndDate are unnecessary repeated which as I mentioned earlier a violation of the 1st Normal Form.
Secondly, Taskname, TaskInitiator, TaskStartDate and TaskEndDate are functionally dependent on TaskID which is not a primary key instead of SectionID which in this case should be the primary key (if on a separate table). This is violation of 3rd Normal Form which says that there should be no Transitional Dependence or non-primary key should be dependent on
another non-primary key.
Although there are instances that you have to de-normalized but I believe this one should be normalized. In my own estimation there should be three tables involved in your design, namely, Sections,Tasks and SubTasks that would like the one below.
Section is related to Tasks, that is, a section could have many Tasks.
And Task is related to Sub-Tasks, that is, a Task could have many Sub-tasks.
If I understand correctly the original poster does not know, how many levels of hierarchy will be needed (hence "and so on"). His problem is to create a design that can hold a structure of any depth.
Imho that is a complex issue that does not have a single answer. When implementing such a design you need to count such factors as:
Will the structure be fairly constant? (How many writes?)
How often will this structure be read?
What operations will need to be possible? (Get all children objects of a given object? Get the parent object? Get the direct children?)
If the structure will be constant You could use the nested set model (http://en.wikipedia.org/wiki/Nested_set_model)
In this way the table has a 'left' and 'right' column. The parent object has its left and right column encompasing the values of any of its children object.
In that way you can list all the children of an object using a query like this:
SELECT child.id
FROM table AS parent
JOIN table AS child
ON child.left BETWEEN parent.left AND parent.right
AND child.right BETWEEN parent.left AND parent.right
WHERE
parent.id = #searchId
This design can be VERY fast to read, but is also EXTREMELY costly when the structure changes (for example when adding a child to any object You will have to update any object with a 'right' value that is higher than the inserted one).
If you need to be able to make changes to structure in real time you should probably use a design with two tables - one holding the objects, the second the structure (something like parentId, childId, differenceInHierarchyLevels).

database normalization

EDIT:
Would it be a good idea to just keep it all under 1 big table and have a flag that differentiates the different forms?
I have to build a site with 5 forms, maybe more. so far the fields for the forms are the following:
What would be the best approach to normalize this design?
I was thinking about splitting "Personal Details" into 3 different tables:
and then reference them from the others with an ID...
Would that make sense? It looks like I'll end up with lots of relationships...
Normalized data essentially means that the same data is not stored multiple times in multiple places. For example, instead of storing the customer contact info with an order, the customer ID is stored with the order and the customer's contact information is 'related' to the order. When the customer's phone number is updated, there is only one place the phone number needs to be updated (the customer table) and all the orders will have the correct information without being updated. Each piece of data exists in one, and only one, place. This is normalized data.
So, to answer your question: no, you will not make your database structure more normalized by breaking up a large table as you described.
The reason to break up a single table into multiple tables is usually to create a one to many relationship. For example, one person might have multiple e-mail addresses. Or multiple physical addresses. Another common reason for breaking up tables is to make systems modular, so that tables can be created that join to existing tables without modifying the existing tables.
Breaking one big table into multiple little tables, with a one to one relationship between them, doesn't make the data any more normalized, it just makes your queries more of a pain to write.* And you don't want to structure your database design around interfaces (forms) unless there is a good reason. There usually isn't.
*Although there are sometimes good reasons to break up big tables and create one to one relationships, normalization isn't one of them.