Redis-server using all RAM at startup - redis

i'm using redis and noticed that it crashes with the following error :
MISCONF Redis is configured to save RDB snapshots
I tried the solution suggested in this post
but everything seems to be OK in term of permissions and space.
htop command tells me that redis is consuming 70% of RAM. i tried to stop / restart redis in order to flush but at startup, the amount of RAM used by redis was growing up dramatically and stops around 66%. I'm pretty sure at this moment no processus was using any redis instance !
what happens there ?

The growing up ram issue is an expected behaviour of Redis at first data load, after restarts, writing the data to disk (snapshot process). Redis tends to allocate memory as much as it can unless you don't use "maxmemory" option at your conf file.
It allocates memory but not release immediately. Sometimes it takes hours, I saw such cases.
Well known fact about Redis is that, it can allocate memory up to twice size of the dataset it keeps.
I suggest you to wait couple of hours without any restart (Redis can work in this time, get/set operations etc.) and keep watching the memory.
Please check that too
Redis will not always free up (return) memory to the OS when keys are
removed. This is not something special about Redis, but it is how most
malloc() implementations work. For example if you fill an instance
with 5GB worth of data, and then remove the equivalent of 2GB of data,
the Resident Set Size (also known as the RSS, which is the number of
memory pages consumed by the process) will probably still be around
5GB, even if Redis will claim that the user memory is around 3GB. This
happens because the underlying allocator can't easily release the
memory. For example often most of the removed keys were allocated in
the same pages as the other keys that still exist.

Related

Is redis using cache?

I restarted my redis server after 120 days.
Before restart, memory usage 29.5GB
After restarted, memory usage 27.5GB
So, how 2GB reduced comes?
Free memory in ram like this article https://redis.io/topics/memory-optimization
Redis will not always free up (return) memory to the OS when keys are
removed. This is not something special about Redis, but it is how most
malloc() implementations work. For example if you fill an instance
with 5GB worth of data, and then remove the equivalent of 2GB of data,
the Resident Set Size (also known as the RSS, which is the number of
memory pages consumed by the process) will probably still be around
5GB, even if Redis will claim that the user memory is around 3GB. This
happens because the underlying allocator can't easily release the
memory. For example often most of the removed keys were allocated in
the same pages as the other keys that still exist. The previous point
means that you need to provision memory based on your peak memory
usage. If your workload from time to time requires 10GB, even if most
of the times 5GB could do, you need to provision for 10GB.
However allocators are smart and are able to reuse free chunks of
memory, so after you freed 2GB of your 5GB data set, when you start
adding more keys again, you'll see the RSS (Resident Set Size) to stay
steady and don't grow more, as you add up to 2GB of additional keys.
The allocator is basically trying to reuse the 2GB of memory
previously (logically) freed.
Because of all this, the fragmentation ratio is not reliable when you
had a memory usage that at peak is much larger than the currently used
memory. The fragmentation is calculated as the amount of memory
currently in use (as the sum of all the allocations performed by
Redis) divided by the physical memory actually used (the RSS value).
Because the RSS reflects the peak memory, when the (virtually) used
memory is low since a lot of keys / values were freed, but the RSS is
high, the ratio mem_used / RSS will be very high.
Or free memory of caches which was used by my redis server?
Is redis using cache? Cache of cache?
Thanks!

Improving performance of Redis set up (degraded after setting vm.overcommit_memory=1)

Need some help in diagnosing and tuning the performance of my Redis set up (2 redis-server instances on an Ubuntu 14.04 machine). Note that a write-heavy Django web application shares the VM with Redis. The machine has 8 cores and 25GB RAM.
I recently discovered that background saving was intermittently failing (with a fork() error) even when RAM wasn't exhausted. To remedy this, I applied the setting vm.overcommit_memory=1 (was previously default).
Moreover vm.swappiness=2, vm.overcommit_ratio=50. I have disabled transparent huge pages in my set up as well via echo never > /sys/kernel/mm/transparent_hugepage/enabled (although haven't done echo never > /sys/kernel/mm/transparent_hugepage/defrag).
Right after changing the overcommit_memory setting, I noticed that I/O utilization went from 13% to 36% (on average). I/O operations per second doubled, the redis-server CPU consumption has more than doubled, and the memory it's consuming has gone up 66%. Consequently, the server response time has substantially gone up . This is how abruptly things escalated after applying vm.overcommit_memory=1:
Note that redis-server is the only ingredient showing escalation - gunicorn, nginx ,celery etc. are performing like before. Moreover, redis has become very spikey.
Lastly, New Relic has started showing me 3 redis instances instead of 2 (bottom most graph). I think the forked child is counted as the 3rd:
My question is: how can I diagnose and salvage performance here? Being new to server administration, I'm unsure how to proceed. Help me find out what's going on here and how I can fix it.
free -m has the following output (in case needed):
total used free shared buffers cached
Mem: 28136 27912 224 576 68 6778
-/+ buffers/cache: 21064 7071
Swap: 0 0 0
As you don't have swap enabled in your system ( which might be worth reconsidering if you have SSDs), ( and your swappiness was set to a low value), you can't blame it on increased swapping due to memory contention.
Your caching about 6GB of data inside the VFS cache. In case of contention this cache would have depleted in favor of process working memory, so I believe it's safe to say memory is not an issue all together.
It's a shot in the dark, but my guess is that your redis-server is configured to "sync"/"save" too often ( search for in the redis config file "appendfsync"), and that by removing the memory allocation limitation, it now actually does it's job :)
If the data is not super crucial, set appendfsync to never and perhaps tweek the save settings to cause less frequent saving.
BTW, regarding the redis & forked child, I believe you are correct.

what is copy-on-write memory

As I continuously write data to redis, the memory used by copy-on-write keeps increasing. Even though I write my program to sleep long enough so that redis will be able to finish all the background save (last memory message is 0 MB of memory used by copy-on-write), the next background save will go back to the high number.
Example,
1300MB of memory used by cow
1400MB of memory used by cow
0MB of memory used by cow
1500MB of memory used by cow
What exactly do all these means? As far as I know, if the copy-on-write memory keeps increasing, there is no way there is enough ram. Also, with each background save that is of high memory used, redis seems non-functional. Jedis always hit the socket timeout exception.
Here I will explain a few things: what Copy-on-Write (CoW) is and how it consumes the memory, why setting 'vm.overcommit_memory = 1' won't help the memory usage and performance issue, and best practices of backing up Redis data.
Copy-on-Write and its memory usage
Redis' snapshot backup leverage the CoW semantics, which is provided by modern operating system to resolve the issue that when forking processes, the memory of the parent process is copied to the child process thus doubles the memory footprint. In CoW, the forked child process will share the original memory space of the parent process. It only copies the memory page when either process modifies that memory page. Here is an illustration of the memory space before data modification and after data modification:
When the Redis' RDB backup is on-going, there will be data changes happening in the parent process, which is accepting new requests from clients and handling it in the memory. If the QPS is high, the parent process will copy tons of memory pages for the new changes during the child process' backup time. Thus the parent process will consume extra memory. In extreme cases, if all of the memory pages are modified, the memory footprint of the Redis instance will be doubled. Yeah, there is a possibility that the memory is doubled, and this fact will explain why Redis provides the "overcommit_memory=1" option, and what problem it can resolve, what it cannot (reducing the memory usage).
What "vm.overcommit_memory = 1" is, and what issues it resolves
During the RDB backup, you may see such log error:
10202:M 13 Sep 11:34:16.535 # Can't save in background: fork: Cannot allocate memory
It indicates there is not enough memory to fork the child process to do the backup. If the Redis process consumes 2GB memory now, when forking the child process, operating system will assume you have ANOTHER 2GB memory, so that in extreme cases of CoW, there is sufficient memory to copy all dirty memory pages. Even the extra memory is not used yet when forking the child process, it checks the idle memory to avoid later out-of-memory errors. In the Redis log, it provides the solution:
10202:M 13 Sep 11:33:09.943 # WARNING overcommit_memory is set to 0! Background
save may fail under low memory condition. To fix this issue add
'vm.overcommit_memory = 1' to /etc/sysctl.conf and then reboot or run the
command 'sysctl vm.overcommit_memory=1' for this to take effect.
So setting 'vm.overcommit_memory = 1' will allow you to fork the child process when the idle memory is low. If you know the dirty memory pages during the backup process won't be too many, there won't be any actual problems because the memory will be allocated successfully every time a new CoW operation happens.
And, 'vm.overcommit_memory = 1' only guarantees that you can fork the child process to backup the Redis data, but it cannot reduce the memory usage if there are writing operations happening all the time in the parent process.
Redis backup practice
There are three ways of persisting the Redis memory data: RDB(snapshotting), AOF, and the hybrid of the two. Any approach will impact the server response time to some extent no matter how you config the settings. To minimize the impact of the persisting process, we normally run the backup in slave instance instead on the master instance. However, there is a new risk if we do it on a slave. When there is network partitions happening, the slave may not be able to keep up-to-date, so backing up on a slave will risk losing some data. One resolution is to have multiple slaves, so the chance of having all of them out-of-sync with the master instance is lowered. Another prevention is setting up robust monitoring system, so we can detect network issues sooner and reduce the time span of the network partition.
From the Redis FAQ:
Redis background saving schema relies on the copy-on-write semantic of the fork in modern operating systems: Redis forks (creates a child process) that is an exact copy of the parent. The child process dumps the DB on disk and finally exits. In theory, the child should use as much memory as the parent being a copy, but actually thanks to the copy-on-write semantic implemented by most modern operating systems the parent and child process will share the common memory pages. A page will be duplicated only when it changes in the child or in the parent. Since in theory, all the pages may change while the child process is saving.
The increased memory usage during the save process is dependent on the number of writes performed while the dump is undergoing because of the copy-on-write (COW) mechanism.
What you could do instead is, configure a Redis slave and delegate the task of persistence to it.

Redis - Default blocking VM

The blocking VM performance is better overall, as there is no time lost in
synchronization, spawning of threads, and resuming blocked
clients waiting for values. So if you are willing to accept an higher
latency from time to time, blocking VM can be a good pick. Especially
if swapping happens rarely and most of your often accessed data
happens to fit in your memory.
This is default mode of Redis (and the only mode going forward I believe now VM is deprecated in 2.6), leaving the OS to handle paging (if/when required). I am correct in my understanding that it will take some time to get "hot" when booted/started. When working on a 1gb RAM node with a 16gb dataset, does Redis attempt to load it all into virtual memory at boot and thus 90%+ is immediately paged out, and only after some good amount of usages does the above statement hold true?
Redis VM was already deprecated in Redis 2.4, and has been removed in Redis 2.6. It is a dead end: don't use it.
I think you are confusing the blocking VM with OS paging. They are two different things.
OS paging is the default mode of Redis when Redis VM is not configured at all (whatever the blocking mode). The OS will swap Redis memory if it does not fit in physical memory. The event loop can be frozen at any time. When it happens, performance is abysmal because none of the Redis internal data structures is designed for this (no locality, no paging system).
Redis VM can be configured in non blocking mode (using I/O threads). When I/Os are done, the event loop is not blocked, and Redis is still responsive. However, when too many I/Os pile up, the I/O threads will be completely busy, and you end up with a responsive Redis, but unable to process any queries requiring I/Os.
Redis VM can also be configured in blocking mode. In this mode all I/Os are synchronously performed in the main event loop thread. So the event loop is frozen in case of I/O (for instance in case of a key miss). All clients are impacted. However, general performance (CPU consumption and latency) is better than with the non blocking mode because some threading scheduling/synchronization is saved.
In practice, the difference between OS paging and the Redis blocking VM is the granularity level. With Redis VM, the granularity is the key. With OS paging, well it is the page (a 4 KB block which can span on several unrelated keys).
In all 3 cases, the initial load of the dump file will be extremely slow and generate a peak of random I/Os on your system. As you pointed out, most objects will be loaded and then swapped out. The warm-up time will be significant.
Except if you have extreme locality in your data, or if you do not care at all about the latencies, using 1 GB RAM for a 16 GB dataset with the Redis VM is science-fiction IMO.
There is a reason why the Redis VM was phased out. By design, it will never perform as well as a disk-based datastore (which can exploit file mapping or direct I/Os to avoid the double buffering, and use adapted data structures like B-trees).
Redis as an in-memory store is excellent. But if you need to store something which is bigger than RAM, don't use it. Other (disk-based) stores will all perform much better.

Redis - Can data size be greater than memory size?

I'm rather new to Redis and before using it I'd like to learn some important (as for me) details on it. So....
Redis is using RAM and HDD for storing data. RAM is used as fast read/write storage, HDD is used to make this data persistant. When Redis is started it loads all data from HDD to RAM or it loads only often queried data to the RAM? What if I have 500Mb Redis storage on HDD, but I have only 100Mb or RAM for Redis. Where can I read about it?
Redis loads everything into RAM. All the data is written to disk, but will only be read for things like restarting the server or making a backup.
There are a couple of ways you can use it with less RAM than data though. You can set it up in combination with MySQL or another disk based store to work much like memcached - you manage cache misses and persistence manually.
Redis has a VM mode where all keys must fit in RAM but infrequently accessed data can be on disk. However, I'm not sure if this is in the stable builds yet.
Recent versions (>2.0) have improved significantly and memory management is more efficient. See this blog post that explains how to use hashes to optimize RAM memory footprint: http://antirez.com/post/redis-weekly-update-7.html
The feature called Virtual Memory and it official deprecated
Redis VM is now deprecated. Redis 2.4 will be the latest Redis version featuring Virtual Memory (but it also warns you that Virtual Memory usage is discouraged). We found that using VM has several disadvantages and problems. In the future of Redis we want to simply provide the best in-memory database (but persistent on disk as usual) ever, without considering at least for now the support for databases bigger than RAM. Our future efforts are focused into providing scripting, cluster, and better persistence.
more information about VM: https://redis.io/topics/virtual-memory