Fragmented UDP packet loss? - udp

We have an application doing udp broadcast.
The packet size is mostly higher than the mtu so they will be fragmented.
tcpdump says the packets are all being received but the application doesn't get them all.
The whole stuff isn't happening at all if the mtu is set larger so there isn't fragmentation. (this is our workaround right now - but Germans don't like workarounds)
So it looks like fragmentation is the problem.
But I am not able to understand why and where the packets get lost.
The app developers say they can see the loss of the packets right at the socket they are picking them up. So their application isn't losing the packets.
My questions are:
Where is tcpdump monitoring on linux the device?
Are the packets there already reassembled or is this done later?
How can I debug this issue further?

tcpdump uses libpcap which gets copies of packets very early in the Linux network stack. IP fragment reassembly in the Linux network stack would happen after libpcap (and therefore after tcpdump). Save the pcap and view with Wireshark; it will have better analysis features and will help you find any missing IP fragments (if there are any).

Related

Netty loses udp packets at the beginning of the communication

I have a strange problem with Netty 4.0.27. I'm building a system which have to receive large number of incoming udp packet (all packet is 28 bytes long) and save them to a file. I implemented it and I also developed a simulator which send packets to the server.
I experienced that Netty server has a huge packet loss at the beginning of the communication, but after few thousand packet, the server received all packets successfully. Unfortunately, I can't afford this amount of packet loss (for example it loses 5-6 percent of first 200k packet).
I think, Netty adapts to high traffic, but I found nothing in the documentation. I also tried to use ChannelOption's SO_RCVBUF option but i had the same problem.

What are common UDP usecases?

Can anyone tell be where to use the UDP protocol except live streaming of music/video? What are default usecases for UDP?
UDP is also good for broadcast, such as service discovery - finding that newly plugged in printer.
Also of note is that broadcast is anonymous, you don't need to specify target hosts, as such it can form the foundation of a convenient plug-and-play or high-availability network.
UDP is stateless and is good for applications that have large numbers of clients connecting to a server such as time servers or DNS. The fact that no connection has to established and maintained reduces the memory required by the server. There is no handshaking involved and so this reduces the traffic on the network. On the downside, if the information transferred requires multiple packets there is no transmission control to ensure that all packets arrive and in the correct order - but in games packets lost are probably better than late or disordered.
Anything else where you need performance but can survive if a packet gets lost along the way. Multiplayer games come to mind, for example.
A very common use case is DNS, since the overhead of creating a TCP connection would by far outweight the actual payload.
Additional use cases are NTP (network time service) and most video games.
I use UDP to add chat capabilities to our applications. No need to create a server. It is also useful to dispatch events to all users of our applications.

Why is SNMP usually run over UDP and not TCP/IP?

This morning, there were big problems at work because an SNMP trap didn't "go through" because SNMP is run over UDP. I remember from the networking class in college that UDP isn't guaranteed delivery like TCP/IP. And Wikipedia says that SNMP can be run over TCP/IP, but UDP is more common.
I get that some of the advantages of UDP over TCP/IP are speed, broadcasting, and multicasting. But it seems to me that guaranteed delivery is more important for network monitoring than broadcasting ability. Particularly when there are serious high-security needs. One of my coworkers told me that UDP packets are the first to be dropped when traffic gets heavy. That is yet another reason to prefer TCP/IP over UDP for network monitoring (IMO).
So why does SNMP use UDP? I can't figure it out and can't find a good reason on Google either.
UDP is actually expected to work better than TCP in lossy networks (or congested networks). TCP is far better at transferring large quantities of data, but when the network fails it's more likely that UDP will get through. (in fact, I recently did a study testing this and it found that SNMP over UDP succeeded far better than SNMP over TCP in lossy networks when the UDP timeout was set properly). Generally, TCP starts behaving poorly at about 5% packet loss and becomes completely useless at 33% (ish) and UDP will still succeed (eventually).
So the right thing to do, as always, is pick the right tool for the right job. If you're doing routine monitoring of lots of data, you might consider TCP. But be prepared to fall back to UDP for fixing problems. Most stacks these days can actually use both TCP and UDP.
As for sending TRAPs, yes TRAPs are unreliable because they're not acknowledged. However, SNMP INFORMs are an acknowledged version of a SNMP TRAP. Thus if you want to know that the notification receiver got the message, please use INFORMs. Note that TCP does not solve this problem as it only provides layer 3 level notification that the message was received. There is no assurance that the notification receiver actually got it. SNMP INFORMs do application level acknowledgement and are much more trustworthy than assuming a TCP ack indicates they got it.
If systems sent SNMP traps via TCP they could block waiting for the packets to be ACKed if there was a problem getting the traffic to the receiver. If a lot of traps were generated, it could use up the available sockets on the system and the system would lock up. With UDP that is not an issue because it is stateless. A similar problem took out BitBucket in January although it was syslog protocol rather than SNMP--basically, they were inadvertently using syslog over TCP due to a configuration error, the syslog server went down, and all of the servers locked up waiting for the syslog server to ACK their packets. If SNMP traps were sent over TCP, a similar problem could occur.
http://blog.bitbucket.org/2012/01/12/follow-up-on-our-downtime-last-week/
Check out O'Reilly's writings on SNMP: https://library.oreilly.com/book/9780596008406/essential-snmp/18.xhtml
One advantage of using UDP for SNMP traps is that you can direct UDP to a broadcast address, and then field them with multiple management stations on that subnet.
The use of traps with SNMP is considered unreliable. You really should not be relying on traps.
SNMP was designed to be used as a request/response protocol. The protocol details are simple (hence the name, "simple network management protocol"). And UDP is a very simple transport. Try implementing TCP on your basic agent - it's considerably more complex than a simple agent coded using UDP.
SNMP get/getnext operations have a retry mechanism - if a response is not received within timeout then the same request is sent up to a maximum number of tries.
Usually, when you're doing SNMP, you're on a company network, you're not doing this over the long haul. UDP can be more efficient. Let's look at (a gross oversimplification of) the conversation via TCP, then via UDP...
TCP version:
client sends SYN to server
server sends SYN/ACK to client
client sends ACK to server - socket is now established
client sends DATA to server
server sends ACK to client
server sends RESPONSE to client
client sends ACK to server
client sends FIN to server
server sends FIN/ACK to client
client sends ACK to server - socket is torn down
UDP version:
client sends request to server
server sends response to client
generally, the UDP version succeeds since it's on the same subnet, or not far away (i.e. on the company network).
However, if there is a problem with either the initial request or the response, it's up to the app to decide. A. can we get by with a missed packet? if so, who cares, just move on. B. do we need to make sure the message is sent? simple, just redo the whole thing... client sends request to server, server sends response to client. The application can provide a number just in case the recipient of the message receives both messages, he knows it's really the same message being sent again.
This same technique is why DNS is done over UDP. It's much lighter weight and generally it works the first time because you are supposed to be near your DNS resolver.

Reliability of UDP on localhost

I know that UDP is inherently unreliable, but when connecting to localhost I would expect the kernel handles the connection differently since everything can be handled internally. So in this special case, is UDP considered a reliable protocol, or will the kernel still potentially junk some packets if buffers are overrun?
I have seen UDP to localhost dropping packets. We think we were overloading the kernel queue. All we know for sure is that it was dropping packets.
I repeat a previous answer to a related question. To remain portable always anticipate your UDP sockets might drop packets or receive out of order data.
I don't think that UDP (or any other network protocol) says anything about different behavior when connecting to localhost. So the answer will depend on the specific kernel that you're using. Best to assume that UDP will behave like UDP.

Where the datagrams are if a client does not listen to a UDP port?

Suppose a client sends a number of datagrams to a server through my application. If my application on the server side stops working and cannot receive any datagrams, but the client still continues to send more data grams to the server through UDP protocol, where are those datagrams going? Will they stay in the server's OS data buffer (or something?)
I ask this question because I want to know that if a client send 1000 datagrams (1K each) to a PC over the internet, will those 1000 datagrams go through the internet (consuming the bandwidth) even if no one is listening to those data?
If the answer is Yes, how should I stop this happening? I mean if a server stops functioning, how should I use UDP to get to know the fact and stops any further sending?
Thanks
I ask this question because I want to know that if a client send 1000 datagrams (1K each) to a PC over the internet, will those 1000 datagrams go through the internet (consuming the bandwidth) even if no one is listening to those data?
Yes
If the answer is Yes, how should I stop this happening? I mean if a server stops functioning, how should I use UDP to get to know the fact and stops any further sending?
You need a protocol level control loop i.e. you need to implement a protocol to take care of this situation. UDP isn't connection-oriented so it is up to the "application" that uses UDP to account for this failure-mode.
UDP itself do not provide facilities to determine if message is successfully received by a client or not. You need you TCP to establish reliable connection and after it sends data over UDP.
The lowest overhead solution would be a keep-alive type thing like jdupont suggested. You can also change to use tcp, which provides this facility for you.