The documention for git_treebuilder_insert seems to imply that it doesn't care whether the object being inserted is valid:
No attempt is being made to ensure that the provided oid points to an existing git object in the object database, nor that the attributes make sense regarding the type of the pointed at object.
However, when actually using the library to create tree objects, if I try to write an entry with an invalid oid, this function returns failure. As reference, here's the code:
if (filemode != GIT_FILEMODE_COMMIT &&
!git_object__is_valid(bld->repo, id, otype_from_mode(filemode)))
return tree_error("Failed to insert entry; invalid object specified", filename);
What is the intended behavior, the code or the documentation?
The documentation is outdated; the code behaves as expected. The change to validate object pointers was made in order to:
Allow library users to make assumptions about the safety of their projects. It is generally an error to create something that dangles and points to an object that does not exist.
Improve consistency between creating references and creating objects. Now they both validate that the thing(s) they're pointing to exist, by default.
If you do not want this behavior, you can disable it, by calling:
git_libgit2_opts(GIT_OPT_ENABLE_STRICT_OBJECT_CREATION, 0);
Related
I've a simple class like this:
Public Class CalculationParameter{
public Long TariffId{get;set;}
}
In a workflow activity, I've an Assign like this:
(From tariffDetail In db.Context.TariffDetails
Where tariffDetial.TariffId = calculationParameter.TariffId).FirstOrDefault()
Dto is passed to Activity as an Input Argument.
It raise following error and I'm wondering how to assign Id. Any Idea?
LINQ to Entities does not recognize the method 'Int64
GetValue[Int64](System.Activities.LocationReference)' method, and this
method cannot be translated into a store expression.
How can I assign the calculationParameter.TariffId to tariffDetial.TariffId?!
UPDATE:
Screen shot attached shows that how I'm trying to assign calculationParameter.TariffId to tariffDetail.TariffId (car.Id = Dto.Id) and the query result should assign to CurrentTrafficDetail object.
Here's your problem. I don't know if there is a solution to it.
As you said in a (now deleted, unfortunately necessitating that I answer) comment, the exception you're getting is
LINQ to Entities does not recognize the method Int64 GetValue[Int64](System.Activities.LocationReference) method, and this method cannot be translated into a store expression.
in your Linq query, calculationParameter is a Variable defined on the workflow. That Variable is actually an instance that extends the type System.Activities.LocationReference and NOT CalculationParameter.
Normally, when the workflow executes, the LocationReference holds all the information it needs to find the value which is assigned to it. That value isn't retrieved until the last possible moment. At runtime, the process of retrieval (getting the executing context, getting the value, converting it to the expected type) is managed by the workflow.
However, when you introduce Linq into the mix, we have the issue you are experiencing. As you may or may not know, your expression gets compiled into the extension method version of the same.
(From tariffDetail In db.Context.TariffDetails
Where tariffDetial.TariffId = calculationParameter.TariffId)
.FirstOrDefault()
is compiled to
db.Context.TariffDetails
.Where(x => x.TariffId = calculationParameter.TariffId)
.FirstOrDefault();
When this executes, L2E doesn't actually execute this code. It gets interpreted and converted into a SQL query which is executed against the database.
As the interpreter isn't omniscient, there are a well defined set of limitations on what methods you can use in a L2S query.
Unfortunately for you, getting the current value of a LocationReference is not one of them.
TL:DR You cannot do this.
As for workarounds, the only thing I think you can do is create a series of extension methods on your data context type or add methods to your CalculationParameter class that you can call from within the Expression Editor. You can create your Linq to Entities queries within these methods, as all types will already have been dereferenced by the workflow runtime, which means you won't have to worry about the L2E interpreter choking on LocationReferences.
*Edit: A workaround can be found here (thanks to Slauma who mentioned this in a comment on the question)
i'm talking to a COM object (Microsoft ADO Recordset object). In a certain case the recordset will return a failed (i.e. negative) HRESULT, with the message:
Item cannot be found in the collection
corresponding to the requested name or
ordinal
i know what this error message means, know why it happened, and i how to fix it. But i know these things because i read the message, which fortunately was in a language i understand.
Now i would like to handle this exception specially. The COM object threw an HRESULT of
0x800A0CC1
In an ideal world Microsoft would have documented what errors can be returned when i try to access:
records.Fields.Items( index )
with an invalid index. But they do not; they most they say is that an error can occur, i.e.:
If Item cannot find an object in the
collection corresponding to the Index
argument, an error occurs.
Given that the returned error code is not documented, is it correct to handle a specific return code of `0x800A0CC1' when i'm trying to trap the exception:
Item cannot be found in the collection
corresponding to the requested name or
ordinal
?
Since Microsoft didn't document the error code, they technically change it in the future.
They did document this error code, but it's hard to find:
ErrorValueEnum:
adErrItemNotFound 3265 -2146825023 0x800A0CC1 Item cannot be found in the collection that corresponds to the requested name or ordinal.
..so, as its' a documented error code, it is safe to test for it explicitly.
You'll have to decide whether or not it is worth the risk, but I believe that it is unlikely that Microsoft will change this error code. Checking for this particular error code is a pretty robust way to go.
Yes, it is fine. It is in fact a documented error code, although finding them is never easy. It is defined in the msdao15.idl Windows SDK file, adErrItemNotFound (error 3265)
I am writing an Eclipse plug-in that uses JDT AST's ASTParser to parse a method. I am looking within that method for the creation of a particular type of object.
When I find a ClassInstanceCreation, I call getType() on it to see what type is being instantiated. I want to be sure that the fully-resolved type being dealt with there is the one I think it is, so I tell the resultant Type object to resolveBinding(). I get null back even though there are no compilation errors and even though I called setResolveBindings(true) on my ASTParser. I gave my ASTParser (via setSource()) the ICompilationUnit that contains my method, so the parser has access to the entire workspace context.
final IMethod method = ...;
final ASTParser parser = ASTParser.newParser(AST.JLS3);
parser.setResolveBindings(true);
parser.setSource(method.getCompilationUnit());
parser.setSourceRange(method.getSourceRange().getOffset(), method.getSourceRange().getLength());
parser.setKind(ASTParser.K_CLASS_BODY_DECLARATIONS);
final TypeDeclaration astRoot = (TypeDeclaration) parser.createAST(null);
final ClassInstanceCreation classInstanceCreation = walkAstAndFindMyExpression(astRoot);
final Type instantiatedType = classInstanceCreation.getType();
System.out.println("BINDING: " + instantiatedType.resolveBinding());
Why does resolveBinding() return null? How can I get the binding information?
Tucked away at the bottom of the overview of ASTParser.setKind(), carefully hidden from people troubleshooting resolveBinding() and setResolveBindings(), is the statement
Binding information is only computed when kind is K_COMPILATION_UNIT.
(from the online Javadoc)
I don't understand offhand why this would be the case, but it does seem to point pretty clearly at what needs to be different!
Consider the following line of code:
private void DoThis() {
int i = 5;
var repo = new ReportsRepository<RptCriteriaHint>();
// This does NOT work
var query1 = repo.Find(x => x.CriteriaTypeID == i).ToList<RptCriteriaHint>();
// This DOES work
var query1 = repo.Find(x => x.CriteriaTypeID == 5).ToList<RptCriteriaHint>();
}
So when I hardwire an actual number into the lambda function, it works fine. When I use a captured variable into the expression it comes back with the following error:
No mapping exists from object type
ReportBuilder.Reporter+<>c__DisplayClass0
to a known managed provider native
type.
Why? How can I fix it?
Technically, the correct way to fix this is for the framework that is accepting the expression tree from your lambda to evaluate the i reference; in other words, it's a LINQ framework limitation for some specific framework. What it is currently trying to do is interpret the i as a member access on some type known to it (the provider) from the database. Because of the way lambda variable capture works, the i local variable is actually a field on a hidden class, the one with the funny name, that the provider doesn't recognize.
So, it's a framework problem.
If you really must get by, you could construct the expression manually, like this:
ParameterExpression x = Expression.Parameter(typeof(RptCriteriaHint), "x");
var query = repo.Find(
Expression.Lambda<Func<RptCriteriaHint,bool>>(
Expression.Equal(
Expression.MakeMemberAccess(
x,
typeof(RptCriteriaHint).GetProperty("CriteriaTypeID")),
Expression.Constant(i)),
x)).ToList();
... but that's just masochism.
Your comment on this entry prompts me to explain further.
Lambdas are convertible into one of two types: a delegate with the correct signature, or an Expression<TDelegate> of the correct signature. LINQ to external databases (as opposed to any kind of in-memory query) works using the second kind of conversion.
The compiler converts lambda expressions into expression trees, roughly speaking, by:
The syntax tree is parsed by the compiler - this happens for all code.
The syntax tree is rewritten after taking into account variable capture. Capturing variables is just like in a normal delegate or lambda - so display classes get created, and captured locals get moved into them (this is the same behaviour as variable capture in C# 2.0 anonymous delegates).
The new syntax tree is converted into a series of calls to the Expression class so that, at runtime, an object tree is created that faithfully represents the parsed text.
LINQ to external data sources is supposed to take this expression tree and interpret it for its semantic content, and interpret symbolic expressions inside the tree as either referring to things specific to its context (e.g. columns in the DB), or immediate values to convert. Usually, System.Reflection is used to look for framework-specific attributes to guide this conversion.
However, it looks like SubSonic is not properly treating symbolic references that it cannot find domain-specific correspondences for; rather than evaluating the symbolic references, it's just punting. Thus, it's a SubSonic problem.
public void PublicMethod(FooBar fooBar)
{
if (fooBar == null)
throw new ArgumentNullException("fooBar", "fooBar cannot be null");
// log the call [added: Thanks S.Lott]
_logger.Log("PublicMethod called with fooBar class " + fooBar.Classification);
int action = DetermineAction();
PrivateMethod(fooBar, action);
}
private void PrivateMethod(FooBar fooBar, int action)
{
if (fooBar == null)
throw new ArgumentNullException("fooBar", "fooBar cannot be null"); // Is this line superfluous?
/*
Do something
*/
}
Is it OK to skip this kind of error checking in private methods if the input is already checked on the public interface? Usually there's some sort of rule-of-thumb one can go by...
Edit:
Maybe ArgumentNullException isn't such a good example because the argument can be made that you should check at both levels but return different error messages.
I would say no.
While it certainly holds true that you in this case knows that it has already been checked for nullability, in two months time the youngest intern will come along and write
PublicMethod2 that also calls PrivateMethod, but lo and behold he forgot to check for null.
Since the public method doesn't really use foobar, I'm not sure why it's checking. The current private method cares, but it's the private method's responsibility to care. Indeed, the whole point of a private method is to delegate all the responsibilities to it.
A method checks the input it actually uses; it doesn't check stuff it's just passing through.
If a different subclass has the same public method, but some different private method implementation -- one that can tolerate nulls -- what now? You have a public method that now has wrong constraints for the new subclass.
You want to do as little as possible in the public method so that various private implementations are free to do the right thing. Don't "over-check" or "just-in-case" check. Delegate responsibility.
I'd error check everything you can, you never know when something might happen that you didn't think about. (and its better safe than sorry)
When using design by contract (http://en.wikipedia.org/wiki/Design_by_contract) it’s normally client’s (public method) responsibility to make correct invocation, i.e. pass on valid parameters. In this particular scenario it depends whether null belongs to a set of valid input values, therefore there are 3 options:
1) Null is valid value: throwing exceptions or errors would have meant breaking the contract, the server (private method) has to process the null and shouldn’t complain.
2) Null is invalid value and passed by code within your control: it is up to the server (private method) to decide how to react. Obviously, throwing an exception is more graceful way of handling the situation, but it has a cost of having to handle that exception somewhere else up the stack. Exceptions are not the best way to deal with violation of contract caused by programming blunders. You really should throw exceptions not when a contract is already violated but when it cannot be fulfilled because of environmental problems what cannot be controlled in software. Blunders are better handled by sticking an assertion into the beginning of the private method to check that the parameter is not null. This will keep the complexity of your code down, there is no cost of having to handle the exception up the stack and it will achieve the goal of highlighting broken contracts during testing.
3) Then there is defensive programming (http://en.wikipedia.org/wiki/Defensive_programming). When dealing with parameters passed by an external code outside your control the immediate layer of your code needs to run paranoid level of checks and return errors according to its communication contract with the external world. Then, going deeper into the code layers not exposed externally, it still makes more sense to stick to the programming by contract.
At least put a comment that PrivateMethod must have a non-null FooBar and that PublicMethod checks this.
You might want to also mark the "private" method as private or protected.
That depends if a null-value indicates an error for a method. Remember that methods could also be called messages to an object; they operate on the state of the object aswell. Parameters can specialize the kind of message sent.
If publicMethod() does not use a parameter and changes the state of the instance while privateMethod() uses the parameter, do not consider it an error in publicMethod, but do in privateMethod().
If publicMethod() does not change state, consider it an error.
You could see the latter case as providing an interface to the internal functioning of an object.
I'd consider the answer to be "yes, do the check again" because:-
The private member could be reused again in the future from a different path through the code, so program defensively against that situation.
If you perform unit tests on private methods
My view might change if I had a static analyser that could pick this up and not flag the potential use of a null reference in the private method.
In cases where PrivateMethod will be called frequently with input that has already been verified, and only rarely with user input, Then I would use the PublicMethod/PrivateMethod concept with no error checking on PrivateMethod (and with PublicMethod doing nothing other then checking the parameters and calling PrivateMethod)
I would also call the private method something like PublicMethod_impl (for "implementation") so it's clear that it's an internal use/ no checking method.
I maintain that this design leads to more robust application, as it forces you to think about what's checked when. Too often people who always check parameters fall into the trap of "I've checked something, therefore I've checked everything".
As an example of this, a former co-worker (programming in C) would, before using a pointer, always check to see if it was null. Generally, the pointers in his code were initialized as startup and never changed, so the chances of it being null were quite low. Moreover, the pointer has one correct value and 65535 possible wrong values, and he was only checking for one of those wrong values.