New to Tensorflow so not sure if this is a specific question for Tensorflow Federated.
I'm studying adversarial attack on federated learning in this code. I'm curious how the weights received from the server are updated at the client.
For example, here is the code for a 'benign' update:
#tf.function
def compute_benign_update():
"""compute benign update sent back to the server."""
tf.nest.map_structure(lambda a, b: a.assign(b), model_weights,
initial_weights)
num_examples_sum = benign_dataset.reduce(initial_state=tf.constant(0),
reduce_func=reduce_fn)
weights_delta_benign = tf.nest.map_structure(lambda a, b: a - b,
model_weights.trainable,
initial_weights.trainable)
aggregated_outputs = model.report_local_outputs()
return weights_delta_benign, aggregated_outputs, num_examples_sum
I can see that the initial weights received from the server are assigned to model_weights then reduce_fn is used to train on a batch of data on the local client.
#tf.function
def reduce_fn(num_examples_sum, batch):
"""Runs `tff.learning.Model.train_on_batch` on local client batch."""
with tf.GradientTape() as tape:
output = model.forward_pass(batch)
gradients = tape.gradient(output.loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return num_examples_sum + tf.shape(output.predictions)[0]
Inside this function training occurs and (I think) model.trainable_variables is updated. The part that doesn't make sense to me is how the weights_delta_benign is calculated:
weights_delta_benign = tf.nest.map_structure(lambda a, b: a - b,
model_weights.trainable,
initial_weights.trainable)
It seems that the difference between model_weights.trainable and initial_weights.trainable is used, but didn't we originally set these to be equal in the first line of the compute_benign_update() function? I'm assuming the reduce_fn alters initial_weights somehow but I don't see the connection between model.trainable_variables used in the reduce function and initial_weights.trainable_variables.
Thanks, any help appreciated!
In the code you point to, initial_weights is only a collection of values (tf.Tensor objects), and model_weights is a reference to the model's variables (tf.Variable objects). We use initial_weights to assign the initial value to the model's variables.
Then, in the call to optimizer.apply_gradients(zip(gradients, model.trainable_variables)), you only modify the model's variables. (model.trainable_variables, which refers is the same objects as model_weights.trainable. I acknowledge, this is a bit confusing.)
So the subsequent computation of weights_delta_benign is computing the difference between the model's trainable variables at the end and start of the client's training procedure.
In all the toturials (including tf official docs) that I see about tfe, The example uses the gradient tape, and manually adding all the gradients to the list of computed gradients e.g
variables = [w1, b1, w2, b2] <--- manually store all the variables
optimizer = tf.train.AdamOptimizer()
with tf.GradientTape() as tape:
y_pred = model.predict(x, variables)
loss = model.compute_loss(y_pred, y)
grads = tape.gradient(loss, variables) < ---- send them to tape.gradient
optimizer.apply_gradients(zip(grads, variables))
But is it the only way? even for huge models we need to accumulate all the parameters, or we somehow can access the defaults graph variables list
Trying to access tf.get_default_graph().get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
or trainable_variables inside a tfe session gave the empty list.
To the best of my understanding, Eager mode in TensorFlow stores information about model in objects, for example in tf.keras.Model or tf.estimator.Estimator. In the absence of graph you can get the list of variables only there, using tf.keras.Model.trainable_variables for example.
Eager mode, however, can work with graph object created explicitly. In this case, i think it will store list of variables. Without it, keras model object will be the only explicit storage for variables.
When I read tensorflow guidance about graph and session(Graphs and Sessions), I found they suggest to create two graphs for train and validation.
I think this reasonable and I want to use this because my train and validation models are different (for encoder-decoder mode or dropout). However, i don't know how to make variables in trained graph available for test graph without using tf.saver().
When I create two graphs and create variables inside each graph, I found these two variables are totally different as they belong to different graphs.
I have googled a lot and I know there are questions about this problems, such as question1. But there is still no useful answer. If there is any code example or anyone know how to create two graphs for train and validation separately, such as:
def train_model():
g_train = tf.graph()
with g_train.as_default():
train_models
def validation_model():
g_test = tf.graph()
with g_test.as_default():
test_models
One easy way of doing that is to create a 'forward function' that defines the model and change behaviour based on extra parameters.
Here is an example:
def forward_pass(x, is_training, reuse=tf.AUTO_REUSE, name='model_forward_pass'):
# Note the reuse attribute as it tells the getter to either create the graph or get the weights
with tf.variable_scope(name=name, reuse=reuse):
x = tf.layers.conv(x, ...)
...
x = tf.layers.dense(x, ...)
x = tf.layers.dropout(x, rate, training=is_training) # Note the is_training attribute
...
return x
Now you can call the 'forward_pass' function anywhere in your code. You simply need to provide the is_training attribute to use the correct mode for dropout for example. The 'reuse' argument will automatically get the correct values for your weights as long as the 'name' of the 'variable_scope' is the same.
For example:
train_logits_model1 = forward_pass(x_train, is_training=True, name='model1')
# Graph is defined and dropout is used in training mode
test_logits_model1 = forward_pass(x_test, is_training=False, name='model1')
# Graph is reused but the dropout behaviour change to inference mode
train_logits_model2 = forward_pass(x_train2, is_training=True, name='model2')
# Name changed, model2 is added to the graph and dropout is used in training mode
To add to this answer as you stated that you want to have 2 separated graph, you could to that using an assign function:
train_graph = forward_pass(x, is_training=True, reuse=False, name='train_graph')
...
test_graph = forward_pass(x, is_training=False, reuse=False, name='test_graph')
...
train_vars = tf.get_collection('variables', 'train_graph/.*')
test_vars = tf.get_collection('variables','test_graph/.*')
test_assign_ops = []
for test, train in zip(test_vars, train_vars):
test_assign_ops += [tf.assign(test, train)]
assign_op = tf.group(*test_assign_ops)
sess.run(assign_op) # Replace vars in the test_graph by the one in train_graph
I'm a big advocate of method 1 as it is way cleaner and reduce memory usage.
Overview: I want to update only selected variables in a network. The network has parts A->B (in forward direction) and each of them has separate losses La and Lb. I want to train the weights a of A to optimize Lb. While doing this, the weights b of B should be fixed. How can I do this?
Approach 1: Select only a as variables to minimize using var_list in optimizer.minimize(loss, var_list=[a]).
https://github.com/tensorflow/tensorflow/issues/834 . This crashes with an error ValueError: No gradients provided for any variable, check your graph for ops that do not support gradients, between variables (...) and loss (...). This actually works fine in other scenarios, but apparently it does not like that weights b are not in the var_list.
Edit 1: The line that causes the error: a_optim = tf.train.AdamOptimizer(args.lr, beta1=args.beta1).minimize(self.a_loss, var_list=self.a_vars, global_step=self.global_step)
Approach 2: Same as Approach 1, but also include b in the var_list. The problem is now that the network updates a and b, whereas it should just send the gradients through B and only update A.
Edit 2: The line that works, but is not what I want: a_optim = tf.train.AdamOptimizer(args.lr, beta1=args.beta1).minimize(self.a_loss, var_list=self.a_vars+self.b_vars, global_step=self.global_step)
Approach 3: Use tf.stop_gradient(tensor) Holding variables constant during optimizer . From the documentation I infer that this only stops the gradients from flowing further to the left in the graph. I want the ignore variables on the right.
Approach 4: Set tf.Variable(..., trainable=True), but that looks very inflexible if I want to alternate training between A and B.
I found that, for a better control of which variables to update during the optimization, it is better to use: 'compute_gradients' and 'apply_gradients' approach.
The compute_gradients will return a list of tuple of gradients and variables tensors. You can modify the returning gradient tensors whatever you want and also be able to select the subset of variables for updating.
Then, you pass a list of tuple of gradients and variables that you want to update to 'apply_gradients'
Here are some examples:
optimizer = tf.train.AdamOptimizer(learning_rate=0.0001)
grads = optimizer.compute_gradients(your_cost_function)
# You can update 'g' and exclude some v's
grad_lists = [(g, v) for g, v in grads]
train_op = optimizer.apply_gradients(grad_lists)
Then, run your session.
sess.run(train_op, feed_dict={...})
Also, since you have 2 loss functions, you should create 2 train operations.
Hope this help!
It turns out that the final op in A was non-differentiable (tf_argmax) and therefore obviously gradients could not be passed from B to A.
I'm a newbie to TensorFlow. I'm confused about the difference between tf.placeholder and tf.Variable. In my view, tf.placeholder is used for input data, and tf.Variable is used to store the state of data. This is all what I know.
Could someone explain to me more in detail about their differences? In particular, when to use tf.Variable and when to use tf.placeholder?
In short, you use tf.Variable for trainable variables such as weights (W) and biases (B) for your model.
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))), name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]), name='biases')
tf.placeholder is used to feed actual training examples.
images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
This is how you feed the training examples during the training:
for step in xrange(FLAGS.max_steps):
feed_dict = {
images_placeholder: images_feed,
labels_placeholder: labels_feed,
}
_, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)
Your tf.variables will be trained (modified) as the result of this training.
See more at https://www.tensorflow.org/versions/r0.7/tutorials/mnist/tf/index.html. (Examples are taken from the web page.)
The difference is that with tf.Variable you have to provide an initial value when you declare it. With tf.placeholder you don't have to provide an initial value and you can specify it at run time with the feed_dict argument inside Session.run
Since Tensor computations compose of graphs then it's better to interpret the two in terms of graphs.
Take for example the simple linear regression
WX+B=Y
where W and B stand for the weights and bias and X for the observations' inputs and Y for the observations' outputs.
Obviously X and Y are of the same nature (manifest variables) which differ from that of W and B (latent variables). X and Y are values of the samples (observations) and hence need a place to be filled, while W and B are the weights and bias, Variables (the previous values affect the latter) in the graph which should be trained using different X and Y pairs. We place different samples to the Placeholders to train the Variables.
We only need to save or restore the Variables (at checkpoints) to save or rebuild the graph with the code.
Placeholders are mostly holders for the different datasets (for example training data or test data). However, Variables are trained in the training process for the specific tasks, i.e., to predict the outcome of the input or map the inputs to the desired labels. They remain the same until you retrain or fine-tune the model using different or the same samples to fill into the Placeholders often through the dict. For instance:
session.run(a_graph, dict = {a_placeholder_name : sample_values})
Placeholders are also passed as parameters to set models.
If you change placeholders (add, delete, change the shape etc) of a model in the middle of training, you can still reload the checkpoint without any other modifications. But if the variables of a saved model are changed, you should adjust the checkpoint accordingly to reload it and continue the training (all variables defined in the graph should be available in the checkpoint).
To sum up, if the values are from the samples (observations you already have) you safely make a placeholder to hold them, while if you need a parameter to be trained harness a Variable (simply put, set the Variables for the values you want to get using TF automatically).
In some interesting models, like a style transfer model, the input pixes are going to be optimized and the normally-called model variables are fixed, then we should make the input (usually initialized randomly) as a variable as implemented in that link.
For more information please infer to this simple and illustrating doc.
TL;DR
Variables
For parameters to learn
Values can be derived from training
Initial values are required (often random)
Placeholders
Allocated storage for data (such as for image pixel data during a feed)
Initial values are not required (but can be set, see tf.placeholder_with_default)
The most obvious difference between the tf.Variable and the tf.placeholder is that
you use variables to hold and update parameters. Variables are
in-memory buffers containing tensors. They must be explicitly
initialized and can be saved to disk during and after training. You
can later restore saved values to exercise or analyze the model.
Initialization of the variables is done with sess.run(tf.global_variables_initializer()). Also while creating a variable, you need to pass a Tensor as its initial value to the Variable() constructor and when you create a variable you always know its shape.
On the other hand, you can't update the placeholder. They also should not be initialized, but because they are a promise to have a tensor, you need to feed the value into them sess.run(<op>, {a: <some_val>}). And at last, in comparison to a variable, placeholder might not know the shape. You can either provide parts of the dimensions or provide nothing at all.
There other differences:
the values inside the variable can be updated during optimizations
variables can be shared, and can be non-trainable
the values inside the variable can be stored after training
when the variable is created, 3 ops are added to a graph (variable op, initializer op, ops for the initial value)
placeholder is a function, Variable is a class (hence an uppercase)
when you use TF in a distributed environment, variables are stored in a special place (parameter server) and are shared between the workers.
Interesting part is that not only placeholders can be fed. You can feed the value to a Variable and even to a constant.
Adding to other's answers, they also explain it very well in this MNIST tutorial on Tensoflow website:
We describe these interacting operations by manipulating symbolic
variables. Let's create one:
x = tf.placeholder(tf.float32, [None, 784]),
x isn't a specific value. It's a placeholder, a value that we'll input when we ask TensorFlow to
run a computation. We want to be able to input any number of MNIST
images, each flattened into a 784-dimensional vector. We represent
this as a 2-D tensor of floating-point numbers, with a shape [None,
784]. (Here None means that a dimension can be of any length.)
We also need the weights and biases for our model. We could imagine
treating these like additional inputs, but TensorFlow has an even
better way to handle it: Variable. A Variable is a modifiable tensor
that lives in TensorFlow's graph of interacting operations. It can be
used and even modified by the computation. For machine learning
applications, one generally has the model parameters be Variables.
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
We create these Variables by giving tf.Variable the initial value of
the Variable: in this case, we initialize both W and b as tensors full
of zeros. Since we are going to learn W and b, it doesn't matter very
much what they initially are.
Tensorflow uses three types of containers to store/execute the process
Constants :Constants holds the typical data.
variables: Data values will be changed, with respective the functions such as cost_function..
placeholders: Training/Testing data will be passed in to the graph.
Example snippet:
import numpy as np
import tensorflow as tf
### Model parameters ###
W = tf.Variable([.3], tf.float32)
b = tf.Variable([-.3], tf.float32)
### Model input and output ###
x = tf.placeholder(tf.float32)
linear_model = W * x + b
y = tf.placeholder(tf.float32)
### loss ###
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
### optimizer ###
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
### training data ###
x_train = [1,2,3,4]
y_train = [0,-1,-2,-3]
### training loop ###
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
for i in range(1000):
sess.run(train, {x:x_train, y:y_train})
As the name say placeholder is a promise to provide a value later i.e.
Variable are simply the training parameters (W(matrix), b(bias) same as the normal variables you use in your day to day programming, which the trainer updates/modify on each run/step.
While placeholder doesn't require any initial value, that when you created x and y TF doesn't allocated any memory, instead later when you feed the placeholders in the sess.run() using feed_dict, TensorFlow will allocate the appropriately sized memory for them (x and y) - this unconstrained-ness allows us to feed any size and shape of data.
In nutshell:
Variable - is a parameter you want trainer (i.e. GradientDescentOptimizer) to update after each step.
Placeholder demo -
a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
adder_node = a + b # + provides a shortcut for tf.add(a, b)
Execution:
print(sess.run(adder_node, {a: 3, b:4.5}))
print(sess.run(adder_node, {a: [1,3], b: [2, 4]}))
resulting in the output
7.5
[ 3. 7.]
In the first case 3 and 4.5 will be passed to a and b respectively, and then to adder_node ouputting 7. In second case there's a feed list, first step 1 and 2 will be added, next 3 and 4 (a and b).
Relevant reads:
tf.placeholder doc.
tf.Variable doc.
Variable VS placeholder.
Variables
A TensorFlow variable is the best way to represent shared, persistent state manipulated by your program. Variables are manipulated via the tf.Variable class. Internally, a tf.Variable stores a persistent tensor. Specific operations allow you to read and modify the values of this tensor. These modifications are visible across multiple tf.Sessions, so multiple workers can see the same values for a tf.Variable. Variables must be initialized before using.
Example:
x = tf.Variable(3, name="x")
y = tf.Variable(4, name="y")
f = x*x*y + y + 2
This creates a computation graph. The variables (x and y) can be initialized and the function (f) evaluated in a tensorflow session as follows:
with tf.Session() as sess:
x.initializer.run()
y.initializer.run()
result = f.eval()
print(result)
42
Placeholders
A placeholder is a node (same as a variable) whose value can be initialized in the future. These nodes basically output the value assigned to them during runtime. A placeholder node can be assigned using the tf.placeholder() class to which you can provide arguments such as type of the variable and/or its shape. Placeholders are extensively used for representing the training dataset in a machine learning model as the training dataset keeps changing.
Example:
A = tf.placeholder(tf.float32, shape=(None, 3))
B = A + 5
Note: 'None' for a dimension means 'any size'.
with tf.Session as sess:
B_val_1 = B.eval(feed_dict={A: [[1, 2, 3]]})
B_val_2 = B.eval(feed_dict={A: [[4, 5, 6], [7, 8, 9]]})
print(B_val_1)
[[6. 7. 8.]]
print(B_val_2)
[[9. 10. 11.]
[12. 13. 14.]]
References:
https://www.tensorflow.org/guide/variables
https://www.tensorflow.org/api_docs/python/tf/placeholder
O'Reilly: Hands-On Machine Learning with Scikit-Learn & Tensorflow
Think of Variable in tensorflow as a normal variables which we use in programming languages. We initialize variables, we can modify it later as well. Whereas placeholder doesn’t require initial value. Placeholder simply allocates block of memory for future use. Later, we can use feed_dict to feed the data into placeholder. By default, placeholder has an unconstrained shape, which allows you to feed tensors of different shapes in a session. You can make constrained shape by passing optional argument -shape, as I have done below.
x = tf.placeholder(tf.float32,(3,4))
y = x + 2
sess = tf.Session()
print(sess.run(y)) # will cause an error
s = np.random.rand(3,4)
print(sess.run(y, feed_dict={x:s}))
While doing Machine Learning task, most of the time we are unaware of number of rows but (let’s assume) we do know the number of features or columns. In that case, we can use None.
x = tf.placeholder(tf.float32, shape=(None,4))
Now, at run time we can feed any matrix with 4 columns and any number of rows.
Also, Placeholders are used for input data ( they are kind of variables which we use to feed our model), where as Variables are parameters such as weights that we train over time.
Placeholder :
A placeholder is simply a variable that we will assign data to at a later date. It allows us to create our operations and build our computation graph, without needing the data. In TensorFlow terminology, we then feed data into the graph through these placeholders.
Initial values are not required but can have default values with tf.placeholder_with_default)
We have to provide value at runtime like :
a = tf.placeholder(tf.int16) // initialize placeholder value
b = tf.placeholder(tf.int16) // initialize placeholder value
use it using session like :
sess.run(add, feed_dict={a: 2, b: 3}) // this value we have to assign at runtime
Variable :
A TensorFlow variable is the best way to represent shared,
persistent state manipulated by your program.
Variables are manipulated via the tf.Variable class. A tf.Variable
represents a tensor whose value can be changed by running ops on it.
Example : tf.Variable("Welcome to tensorflow!!!")
Tensorflow 2.0 Compatible Answer: The concept of Placeholders, tf.placeholder will not be available in Tensorflow 2.x (>= 2.0) by default, as the Default Execution Mode is Eager Execution.
However, we can use them if used in Graph Mode (Disable Eager Execution).
Equivalent command for TF Placeholder in version 2.x is tf.compat.v1.placeholder.
Equivalent Command for TF Variable in version 2.x is tf.Variable and if you want to migrate the code from 1.x to 2.x, the equivalent command is
tf.compat.v2.Variable.
Please refer this Tensorflow Page for more information about Tensorflow Version 2.0.
Please refer the Migration Guide for more information about migration from versions 1.x to 2.x.
Think of a computation graph. In such graph, we need an input node to pass our data to the graph, those nodes should be defined as Placeholder in tensorflow.
Do not think as a general program in Python. You can write a Python program and do all those stuff that guys explained in other answers just by Variables, but for computation graphs in tensorflow, to feed your data to the graph, you need to define those nods as Placeholders.
For TF V1:
Constant is with initial value and it won't change in the computation;
Variable is with initial value and it can change in the computation; (so good for parameters)
Placeholder is without initial value and it won't change in the computation. (so good for inputs like prediction instances)
For TF V2, same but they try to hide Placeholder (graph mode is not preferred).
In TensorFlow, a variable is just another tensor (like tf.constant or tf.placeholder). It just so happens that variables can be modified by the computation. tf.placeholder is used for inputs that will be provided externally to the computation at run-time (e.g. training data). tf.Variable is used for inputs that are part of the computation and are going to be modified by the computation (e.g. weights of a neural network).