How to make a CMake package? - cmake

I'm attempting to make a CMake package for Crypto++ inclusion in CMake projects, this will end up in the noloader/cryptopp-cmake repo if it gets done.
The ultimate goal is to come up with a working cross-platform FindCryptoPP.cmake file which can be dropped in the Crypto++ source directory to do things like:
find_package(CryptoPP REQUIRED)
target_link_libraries(libbiocoin cryptopp-static)
Or:
find_package(CryptoPP REQUIRED)
target_link_libraries(libbiocoin cryptopp-shared)
In a finished application and have it "just work."
My current best solution within a CMake application is to build Crypto++ for the platform, stick the resulting archive or library in a lib directory, reference that within the CMakeLists.txt and pull it in that way, but of course that requires packaging a binary distribution of the compiled Crypto++ for every platform targeted by the application, which would be nasty to maintain and generally bad even if it weren't crypto code.

It's better to provide a CMake configuration file. find_package will look for a configuration file if no FindFoo.cmake find script is provided. One advantage over a find script is that you won't end with different, maybe conflicting versions of the find script.
See https://cmake.org/cmake/help/latest/manual/cmake-packages.7.html, especially the section Create Layout.

Related

Best practices to build vendored code with CMake

I'm trying to understand what some of the best practices are when using modern CMake (3.13+) with respect to building and including vendored or submoduled code.
Say I'm building a library MyLib. My file structure is something like this
MyLib
|-CMakeLists.txt
|-src
|-include
|-submodules
|-libgeos
In this example, I've included libgeos as a git submodule, because it's really convenient to be able to clone the project and immediately build and run tests because that dependency is present. This could also be solved by using FetchContent or something, and my question still stands; the important thing is that I do not want to rely on libgeos being installed in build environment.
Note I picked libgeos arbitrarily; I have no idea if libgeos is set up as a cmake project appropriately for this example, but this is all theoretical and I just needed some concrete library name. Please do not use the specific details of how libgeos is configured to answer this, unless libgeos is a good example of conventional cmake.
But now, there's some other project that wants to use my project, and it needs libgeos and doesn't want to depend on my project providing it.
OtherProject
|-CMakeLists.txt
|-src
|-include
|-submodules
|-libgeos
|-MyLib
|submodules
|-libgeos
When you clone OtherProject, you get two versions of libgeos, and maybe that's not great; but it's not a huge issue either. And maybe they're not the same version; say MyLib requires libgeos >= 2.0, so 2.0 is what MyLib includes, and OtherProject requires libgeos>=2.1 so OtherProject includes libgeos >= 2.1.
Now we potentially end up with some build issues. If we have the following line in OtherProject/CMakeLists.txt
add_subdirectory(submodules/libgeos)
and then again, that same line within MyLib/CMakeLists.txt, we end up with cmake errors because libgeos as a target is defined twice in the build. This can be solved a couple of ways.
Check if geos exists before adding it
if(NOT TARGET geos)
add_subdirectory(submodules/libgeos)
endif()
But this case has some issues; if that blob is in OtherProject at the top, it's fine and both projects use libgeos 2.1. But if it's in OtherProject after add_subdirectory(submodules/MyLib), then the geos 2.0 version gets added to the build, which may or may not fail loudly (Hopefully it would).
This could also be solved with find_package. Both projects include cmake/FindGeos.cmake which use that blurb above (if(NOT TARGET...)) to add geos the build and then the top project cmake files can do this
list(APPEND CMAKE_MODULE_PATH cmake)
find_package(geos 2) # (or 2.1)
then it doesn't matter what order they try to include geos, because they will both defer to FindGeos.cmake in OtherProject because it's first in the module path.
But now there's a new issue, some ThirdProject wants to use MyLib also, but ThirdProject wants to depend on libgeos which is in the system environment. It uses find_package(geos 2.1 CONFIG) to use the installed GeosConfig.cmake file, which adds geos::geos to the build and sets geos_FOUND. Suddenly, MyLib fails to build, because geos_FOUND was set, but I'm doing target_link_library(mylib PUBLIC geos).
So this could be solved by adding add_library(geos::geos ALIAS geos) in both custom FindGeos.cmake files, then it doesn't matter if geos was built from source or using the installed version, the target names are the same either way.
Now we get to my actual questions:
Lets start with
Am I crazy, no one does this, and my team is trying to use cmake all wrong?
Is there some feature of cmake that I've just completely missed that solves all these problems?
I suspect there's a good few books or presentations that cover this topic, but I just don't know where to look because there's so many; what should I be looking at? I've seen the CMake Packages page, which looks like it solves the problem when you're using all projects which are configured according to that page; but it doesn't really answer how to bridge the gap between older and newer projects.
If I'm not crazy and there's no straightforward answer or presentation that I can look at, then
What should the cmake configuration for both MyLib and libgeos look like so that these cases work?
MyLib is built alone
MyLib is built as part of a larger project which provides a different version of geos
MyLib is built as part of a larger project which depends on a different version of geos in the environment
I understand that cmake provides helpers that could be used to produce MyLibConfig.cmake if I wanted to install it in the environment. I also see that the export() function exists, which could be used to save those files in the build tree somewhere and then find them with find_package in config mode. But this feels a bit odd to me to do because it's not a multi-stage build, it's just one invocation of cmake then make.
But lets say that's the right answer and the CMake for libgeos doesn't follow it. Would it be appropriate to have FindGeos.cmake do something like this?
if(NOT geos_FOUND)
add_subdirectory(submodules/libgeos)
export(geos NAMESPACE geos)
find_package(geos CONFIG)
endif()

How to use find_package in CMake? (Example: GMP library)

I'm trying to use find_package to include libraries in CMake.
This question talks about how to tell CMake to link to the GMP library (external). I am trying to follow the steps of the answer there but do not have any of the <name>Config.cmake or <name>-config.cmake files, as mentioned by some of the comments, which appears to be the default. The answer does not mention any solution for when you don't know how to get/find these files. The comments to that answer link to an old website (external) with a lot of broken links, that describes a list of Load Modules. It's unclear to me where these modules come from and how to get them.
According to the official CMake documentation (external), if the configuration files are not found, find_package falls back from "Module Mode" to "Config Mode". I don't understand what this means and in what cases this would be relevant, especially since the documentation discourages reading about "Config Mode".
The documentation says that
The file is first searched in the CMAKE_MODULE_PATH, then among the Find Modules provided by the CMake installation.
I am still confused about whether these configuration files are supposed to come with CMake or with the library in question and where they are supposed to be located. Probably both are possible but how does one know in a specific case?
Example code, trying to follow modern best practices:
# CMakeLists.txt (not working)
cmake_minimum_required(VERSION 3.2) # I have no idea what version I actually need
project (GMP_demo_project)
# Enable C++17 standard
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
find_package(GMP REQUIRED)
# Create the executable from sources
add_executable(GMP_demo GMP_demo.cpp)
target_link_libraries(GMP_demo gmp gmpxx)
The code outputs an error message along the lines of
CMake Error at CMakeLists.txt:10 (find_package):
By not providing "FindGMP.cmake" in CMAKE_MODULE_PATH this project has
asked CMake to find a package configuration file provided by "GMP", but
CMake did not find one.
Could not find a package configuration file provided by "GMP" with any of
the following names:
GMPConfig.cmake
gmp-config.cmake
Add the installation prefix of "GMP" to CMAKE_PREFIX_PATH or set "GMP_DIR"
to a directory containing one of the above files. If "GMP" provides a
separate development package or SDK, be sure it has been installed.
Question: How does one, in general, obtain and organize these configuration files (CMake Load Modules)? How can one expect another user to have these files on his system? My question is intended to be general and only use GMP as an example (although I am in fact interested in being able to use it).
Just as an aside, I can compile, link and execute my demo code just fine using gcc GMP_demo.cpp -lstdc++ -lgmp after having installed GMP as suggested by the library documentation. The problem is just getting CMake to do it. I can also just give CMake the absolute path of the library, which would of course be much easier but not portable (assuming one can get find_package to actually work and be portable with reasonable amounts of work).
How does one, in general, obtain and organize these configuration files (CMake Load Modules)?
Broadly speaking, there are three buckets these fall into:
Files provided directly by the package. This is the ideal solution, and would be what CMake calls Config mode. There would be a file called GMPConfig.cmake which cmake could find by searching preconfigured paths, or by providing a specific path at configuration time (cmake -DGMP_Dir=/path/to/GMP/install/root). The advantages of this approach are that generation of GMPConfig.cmake is mostly automatic, and the libraries can include things like installation paths and compilation flags. The disadvantage is that the library develops have to actually go to the effort of leveraging modern CMake, and not everybody does this.
Files provided directly by CMake. For common packages (e.g., boost) CMake ships FindXXX.cmake files that search well-known paths and take care of this for you. These work identically to the above from an end-user perspective, but which Find modules are available depends on the version of CMake you have installed.
Files provided by some random person that are copy/pasted into projects. How these works depends on the person who wrote it, so you'll have to read their documentation. Use your favorite search engine and try to find FindGMP.cmake, then drop it in a module folder somewhere and update CMAKE_MODULE_PATH appropriately.
How can one expect another user to have these files on his system?
It's your job to install whatever dependencies a package requires. Anything using modern CMake (bullet 1 listed above) should install the XXXConfig.cmake file as part of its installation. If a library is built by something other than CMake, you'd have to either hope for bullet #2, or find/write your own FindXXX.cmake file (bullet #3).
For your specific case, you might be better off with find_library, since your sample compilation line looks like it just needs to link.

CMake for Code::Blocks -- how to NOT get a Makefile

Here is my setup:
Windows 7 x64, MingW, Msys, CMake, Freescale Kinetis SDK, Code::Blocks
I'm trying to get the project settings established by CMake into a proper Code::Blocks project. When I modify the provided build_debug.bat file with -G "CodeBlocks - Unix Makefiles", it indeed produces a .cbp file, as well as the normal Makefile (and it builds the project). However when I open this .cbp file in Code::Blocks, it basically just points to the Makefile, and building the project just runs make on the Makefile.
If I deselect "This is a custom Makefile" from Project Options, and add a source file to the project tree like a normal IDE, it doesn't get built correctly, ie the include files, libraries, linker stuff, compile options, etc., are not imported into the project itself. It seems the project is basically just a holder for the Makefile, so there is not much benefit to this as an IDE.
Of course if I add the source file to the original CMakeLists.txt which is part of the distribution, and rerun cmake (via the build_debug.bat file), then it works fine.
So is there any way to get a "real" IDE configuration out of CMake? I'm guessing the answer is No, since a "real" IDE configuration is a static thing, and a Makefile is a general (Turing complete) program, so there is no way in general to create this automatically, although I suspect for 99% of cases you're just specifying include directories, lib files, and compiler options, so no general programmability is truly needed.
I can probably try to figure out where the deeply obscured gcc calls are getting their include files from, what libs are being linked in, and what compile options are being used, and add all that stuff manually into a native Code::Blocks project, but this seems to defeat the purpose of having this already done for me by the package providers, and gets very tedious when building for a different CPU or development board.
Thanks
"Real configuration" is a CMakeLists.txt, and you need to modify CMakeLists when you editing project configuration. Both makefiles and IDE settings generated by CMake are temporary and you should not edit them.
Some IDEs are able to manage project configuration directly in the CMakeLists.txt

Using cmake to compile a non-cmake project

I have a project that uses cmake to be configured and compiled, but this project depends on an external source tree that uses the traditional configure / make / make install procedure. Is it possible to tell cmake that, before compiling the main project, configure (with some specific parameters), make and make install on the external source tree should be called first?
Thanks
I had the exact same question when coming across this one.
(In my case, wanting to properly add libncurses and libcaca, which are both Autoconf based, as dependecies (and git submodules), to my CMake based project.)
So just to have an answer set to the question, based off of mike.did's comment ;
CMake's ExternalProject module definitely seems to be the proper solution.
(also see:)
Compile other external libraries (without CMakeLists.txt) with CMake
Cleanest way to depend on a make-based C library in my CMake C++ project

Is there any interactive shell for module development in cmake?

CMake is awesome, especially with lots of modules (FindOOXX). However, when it comes to write a FindXXX module, a library XXX which your project depends, it's not that easy to handle for non-cmake-expert. I sometimes encounter a library without support to CMake, and I like to make one for it. I'm wondering if there is any interactive shell while writing/testing cmake modules?
Are you writing FindXXX for project "XXX" or is "XXX" a dependency of your project that you're trying to find? If the former, you should instead write a file called XXX-config.cmake (or XXXConfig.cmake) and install it into one of the directories mentioned in the docs for find_package. In general, XXX-config.cmake files are for projects which are expected to be found by CMake (and installed by the project itself) and FindXXX.cmake files are for projects which don't support CMake (and usually have to support finding any version of XXX).
That said, for FindXXX.cmake, usually you just need a few find_file (e.g., for headers), some find_library calls, or even just a single pkg_check_module from FindPkgConfig.cmake followed by a find_package_handle_standard_args call (use include(FindPackageHandleStandardArgs) to get it). FPHSA makes writing proper Find modules a breeze.
For XXX-config.cmake files, I have typically used configure_file to generate two versions: one for the install (which includes your install(EXPORT) file) and one for the build tree (generated by export() calls). Using this, other useful variables can be accurately set such as things like "which exact version of Boost was used" or "was Python support compiled in" so that dependent projects can get a better picture of what the dependency looks like.
I have also recently discovered that CMake ships with the CMakePackageConfigHelpers module which is supposed to help with making these files. There looks to be quite a bit of documentation for it.