What is naming convention for DTOs in a webservice - oop

I'm designing a restful web service and I was wondering what should I name my DTOs. Can I use suffixes like Request and Response for them? for example for addUser service, there will be 2 DTOs named: AddUserRequest and AddUserResponse.

Does your organization already have a schema that describes a canonical user that you pass in? If that's what you're using, of course you would use the name from that schema. Otherwise, describe them just as you would any class or schema element.
Note that since a DTO doesn't contain its own methods, you probably would not give it a name with an action verb.
However, consider calling them AddUserRequest and AddUserResponse, especially if the method requires more info than just your regular user DTO. This fits with the Interface Segregation Principle in that your interface parameters should be specifically tailored to the request itself (it shouldn't require elements that are unrelated to the request; and you shouldn't have function-type parameters that change the request, those should be extracted into their own calls.) The AddUserRequest might then contain an element called User that holds the user-specific data, and another element holding the set of other associated data on the request, perhaps groups or access permissions, that sort of thing.

DTOs (Data Transfer Object) are like POJOs(Plain Old Java Objects). It should only have getters and setters and not any business logic.
From Wikepedia:
A data transfer object is an object that carries data between
processes. The motivation for its use is that communication between
processes is usually done resorting to remote interfaces (e.g., web
services), where each call is an expensive operation. Because the
majority of the cost of each call is related to the round-trip time
between the client and the server, one way of reducing the number of
calls is to use an object (the DTO) that aggregates the data that
would have been transferred by the several calls, but that is served
by one call only.
The difference between data transfer objects and business objects or
data access objects is that a DTO does not have any behavior except
for storage and retrieval of its own data (mutators and accessors).
DTOs are simple objects that should not contain any business logic
that would require testing.
This pattern is often incorrectly used outside of remote interfaces.
This has triggered a response from its author[3] where he reiterates
that the whole purpose of DTOs is to shift data in expensive remote
calls.
So ideally for those actions you should create some helpers or you can add those as controllers.

Since it is a RESTful service, ideally the user addition/creation request should send back 201 created HTTP status code , with userId in location header and no response body. For the request, you could name it like UserDetails or UserData or simply User. Refer https://pontus.ullgren.com/view/Return_Location_header_after_resource_creation

Related

DDD object validation

We are building a real-estate portal. We have Services, Mappers and Entites. At the stage we are allowing users to either
Create a property via a form.
Upload a batch file containing 1 or more properties.
So if he create a property via the form we can validate the form and if its a valid property, we can add it into our system. But if he upload via a batch file, we think that the responsibility of the form is
to validate that the user provided a file
the file type is valid
and the file size is within the allowed limits.
After this it should hand over the file to the controller or service.
Now the pending tasks are
Process the file and retrieve the contents
Validate the contents
If validated, save the properties or display an error.
So which part(s) are responsible for the above tasks?
I am thinking that the controller should do the initial file processing and pass the data to the service. This means that we will create/fetch the form object in the controller and validate the form within the controller.
Now the next section is to validate the contents, which is actually a collection of entities. So we have following ideas for this stage
Service will validate the data and create the entities, it will save them.
Or service will create the entity with the provided data and then call the validation function of the entity.
Or the service will try to create an entity with the provided data (send the data to the entity constructor), and if the data is valid, the entity will be created or will generate an error etc.
The possible issues I can think about above approaches are
If the service is validating the data, it means the service will know the inner structure of the entity, so if down the road we need to update the entity structure, we have to update the service as well. Which will introduce some sort of dependency.
In the 2nd approach, I don't think that an entity should be created at first place if it isn't valid.
In the 3rd approach, we are creating a functionality within entity's constructor, so making the entity dependent on the data. So when we need to fetch the entity from persistent, we need to provide some stub data.
Or am I over-thinking??
Now the next section is to validate the contents, which is actually a collection of entities.
The Contents, that Controller sends to Service, is a graph of objects / a structure / a plain string in the simplest case, but never a collection of business entities.
If the service is validating the data, it means the service will know the inner structure of the entity
What exactly is Service validating?
Service is validating the data means that Service ensures invariant of every structure / object that it receives.
For example, if F(T) is service method and T is structure with properties { A, B, C } that represents a triangle with three edges, then Service has to ensure the invariants (the length of each site is greater then zero and the sum of the lengths of any two sides must be greater than the length of the third side) of this structure after this structure has been deserialized.
This validation has to be done because deserializer doesn't use constructors to ensure invariants during deserialization.
When these validations are done, all objects passed to Service are valid and can be freely used in business layer directly or converted to objects (for example, entities) known to business layer.
if down the road we need to update the entity structure, we have to update the service as well. Which will introduce some sort of dependency.
This dependency is inavoidable. Since Transfer Objects and Entity Objects are separated, there always exists mapper that knows how to convert them.
Service will validate the data and create the entities, it will save them.
I'd go with this. Service validates data, converts into business layer objects, invokes business layer functions, persists changes.
It depends on what kind of constraints you're validating.
1.parameter validation like notEmpty property name or max length etc.
In this case you could extract the validation logic to a Validator object. This is useful when you have multiple property creating form(web form, file uploading), the validator may be invoked by multiple "client", but the validation logic keeps in one object.
2.business rule validation.
I prefer using domain models, you may have a look at the PhoneNumber example in this presentation

Entity Framework Code First DTO or Model to the UI?

I am creating a brand new application, including the database, and I'm going to use Entity Framework Code First. This will also use WCF for services which also opens it up for multiple UI's for different devices, as well as making the services API usable from other unknown apps.
I have seen this batted around in several posts here on SO but I don't see direct questions or answers pertaining to Code First, although there are a few mentioning POCOs. I am going to ask the question again so here it goes - do I really need DTOs with Entity Framework Code First or can I use the model as a set of common entities for all boundaries? I am really trying to follow the YAGNI train of thought so while I have a clean sheet of paper I figured that I would get this out of the way first.
Thanks,
Paul Speranza
There is no definite answer to this problem and it is also the reason why you didn't find any.
Are you going to build services providing CRUD operations? It generally means that your services will be able to return, insert, update and delete entities as they are = you will always expose whole entity or single exactly defined serializable part of the entity to all clients. But once you do this it probably worth to check WCF Data Services.
Are you going to expose business facade working with entities? The facade will provide real business methods instead of just CRUD operations. These buisness methods will get some data object and decompose it to multiple entities in wrapped business logic. Here it makes sense to use specific DTO for every operation. DTO will transfer only data needed for the operation and return only date allowed to the client.
Very simple example. Suppose that your entities keep information like LastModifiedBy. This is probably information you want to pass back to the client. In the first scenario you have single serializable set so you will pass it back to the client and client pass it modified back to the service. Now you must verify that client didn't change the field because he probably didn't have permissions to do that. You must do it with every single field which client didn't have permission to change. In the second scenario your DTO with updated data will simply not include this property (= specialized DTO for your operation) so client will not be able to send you a new value at all.
It can be somehow related to the way how you want to work with data and where your real logic will be applied. Will it be on the service or on the client? How will you ensure that client will not post invalid data? Do you want to restrict passing invalid data by logic or by specific transferred objects?
I strongly recommend a dedicated view model.
Doing this means:
You can design the UI (and iterate on it) without having to wait to design the data model first.
There is less friction when you want to change the UI.
You can avoid security problems with auto-mapping/model binding "accidentally" updating fields which shouldn't be editable by the user -- just don't put them in the view model.
However, with a WCF Data Service, it's hard to ignore the advantage of being able to write the service in essentially one line when you expose entities directly. So that might make the most sense for the WCF/server side.
But when it comes to UI, you're "gonna need it."
do I really need DTOs with Entity Framework Code First or can I use the model as a set of common entities for all boundaries?
Yes, the same set of POCOs / entities can be used for all boundaries.
But a set of mappers / converters / configurators will be needed to adapt entities to some generic structures of each layer.
For example, when entities are configured with DataContract and DataMember attributes, WCF is able to transfer domain objects' state without creating any special classes.
Similarly, when entities are mapped using Entity Framework fluent mapping api, EF is able to persist domain objects' state in database without creating any special classes.
The same way, entities can be configured to be used in any layer by means of the layer infrastructure without creating any special classes.

Is shared assembly the only way to create objects from WCF REST service

I am writing an application that is consuming an in-house WCF-based REST service and I'll admit to being a REST newbie. Since I can't use the "Add Service Reference", I don't have ready-made proxy objects representing the return types from the service methods. So far the only way I've been able to work with the service is by sharing the assembly containing the data types exposed by the service.
My problem with this arrangment is that I see only two possibilities:
Implement DTOs (DataContracts) and expose those types from my service. I would still have to share an assembly but this approach would limit the types contained in the assembly to the service contract and DTOs. I don't like to use DTOs just for the sake of using them, though as they add another layer of abstraction and processing time to convert from domain object to DTO and vice versa. Plus, if I want to have business rules, validation, etc. on the client, I'd have to share the domain objects anyways, so is the added complexity necessary.
Support serialization of my domain objects, expose those types and share that assembly. This would allow me to share business and validation logic with the client but it also exposes parts of my domain objects to the client that are meant only for the service app.
Perhaps an example would help the discussion...
My client application will display a list of documents that is obtained from the REST service (a GET operation). The service returns an array of DocumentInfo objects (lightweight, read-only representation of a Document).
When the user selects one of the items, the client retrieves the full Document object from the REST service (GET by id) and displays a data entry form so the user can modify the object. We would want validation rules for a rich user experience.
When the user commits the changes, the Document object is submitted to the REST service (a PUT operation) where it is persisted to the back-end data store.
If the state of the Document allows, the user may "Publish" the Document. In this case, the client POSTs a request to the REST service with the Document.ID value and the service performs the operation by retrieving the server-side Document domain object and calling the Publish method. The Publish method should not be available to the client application.
As I see it, my Document and DocumentInfo objects would have to be in a shared assembly. Doing this makes Document.Publish available to the client. One idea to hide it would be to make the method internal and add an InternalsVisibleTo attribute that allows my service app to call the method and not the client but this seems "smelly."
Am I on the right track or completely missing something?
The classes you use on the server should not be the same classes you use on the client (apart from during the data transfer itself). The best approach is to create a package (assembly/project) containing DTOs, and share these between the server and the client. You did mention that you don't want to create DTO's for the sake of it, but it is best practice. The performance impact of adding extra layers is negligible, and layering actually helps make your application easier to develop and maintain (avoiding situations like yours where the client has access to server code).
I suggest starting with the following packages:
Service: Resides on server only, exposes the service and contains server application logic.
DTO: Resides on both server and client. Contains simple classes which contain data which need to be passed between server and client. Classes have no code apart from properties. These are short lived objects which survive long enough only to transfer data.
Repository: Resides on client only. Calls the server, and turns Model objects into DTO's (and vice versa).
Model: Resides on client only. Contains classes which represent business objects and relationships. Model objects stay in memory throughout the life of the application.
Your client application code should call into Repository to get Model objects (you might also consider looking into MVVM if your not sure how to go about this).
If your service code is sufficiently complex that it needs access to Model classes, you should create a separate Model package (obviously give it a different name) - the only classes which should exist both on server and client are DTO classes.
I thought that I'd post the approach I took while giving credit to both Greg and Jake for helping guide me down the path.
While Jake is correct that deserializing the data on the client can be done with any type as long as it implements the same data contract, enforcing this without WSDL can be a bit tricky. I'm in an environment where other developers will be working with my solution both to support and maintain the existing as well as creating new clients that consume my service. They are used to "Add Service Reference" and going.
Greg's points about using different objects on the client and the server were the most helpful. I was trying to minimize duplicate by sharing my domain layer between the client and the server and that was the root of my confusion. As soon as I separated these into two distinct applications and looked at them in isolation, each with their own use cases, the picture became clearer.
As a result, I am now sharing a Contracts assembly which contains my service contracts so that a client can easily create a channel to the server (using WCF on the client-side) and data contracts representing the DTOs passed between client and service.
On the client, I have ViewModel objects which wrap the Model objects (data contracts) for the UI and use a service agent class to communicate with the service using the service contracts from the shared assembly. So when the user clicks the "Publish" button in the UI, the controller (or command in WPF/SL) calls the Publish method on the service agent passing in the ID of the document to publish. The service agent relays the request to the REST API (Publish operation).
On the server, the REST API is implemented using the same service contracts. In this case, the service works with my domain services, repositories and domain objects to carry out the tasks. So when the Publish service operation is invoked, the service retrieves the Document domain object from the DocumentRepository, calls the Publish method on the object which updates the internal state of the object and then the service passes the updated object to the Update method of the repository to persist the changes.
I am pleased with the outcome as I believe this gives me a more robust and extensible architecture to work with. I can change the ViewModels as needed to support the UI with no concern over poluting the service(s) and, likewise, change the internal implementation of the service operations (domain layer) without affecting the client application(s). All that binds the two are the contracts they share. Pretty clean.
You can serialize your domain objects and then de-serialize them into different types on the client. Both types need to implement the same data contract. All serializable types have at least a default data contract that includes all public read/write properties and fields.

WCF Data Services: Processing an object at save time

We are using a WCF Data Service to broker our data server side, and give third parties easy OData access to our data. The server side of things has been relatively easy. The client side, on the other hand, is giving us fits.
We are converting from regular Entity Framework to Data Services, and we've created an assembly which contains the generated client objects that talk to the data service (via a Service Reference). Those classes are partial, so we've added some logic and extended properties to them. This all works great.
The issue we are having is that we need to process our objects at save time, because they need to do some advanced serialization before they are sent over the wire. The DataServiceContext class contains two events: WritingEntity and ReadingEntity. The ReadingEntity event actually happens at the correct time for us (post object deserialization). The WritingEntity event happens at the WRONG time for us (post object serialization).
Is there any way to catch an object before it's written to the request, so that we can call a method on entity that is about to be written?
Obviously we could just loop through the Entities list, looking for any entity that is not in a state of Unchanged or Deleted, and call the appropriate method there...but this would require me to add special code every time I wanted to call SaveChanges on the context. This may be what we need to do, but it would be nice if there was a way to catch the entities before they are written to XML for sending to the service.
Currently there's no hook in the DataServiceContext to do what you want. The closest I can think of is the approach you suggested with walking all the entities and findings those which were modified. You could do this in your own SaveChanges-like method on the context class (which is also partial).

Beans, methods, access and change? What is the recommened practice for handling them (i.e. in ColdFusion)?

I am new to programming (6 weeks now). i am reading a lot of books, sites and blogs right now and i learn something new every day.
Right now i am using coldfusion (job). I have read many of the oop and cf related articles on the web and i am planning to get into mxunit next and after that to look at some frameworks.
One thing bothers me and i am not able to find a satisfactory answer. Beans are sometimes described as DataTransferObjects, they hold Data from one or many sources.
What is the recommended practice to handle this data?
Should i use a separate Object that reads the data, mutates it and than writes it back to the bean, so that the bean is just a storage for data (accessible through getters) or should i implement the methods to manipulate the data in the bean.
I see two options.
1. The bean is only storage, other objects have to do something with its data.
2. The bean is storage and logic, other objects tell it to do something with its data.
The second option seems to me to adhere more to encapsulation while the first seems to be the way that beans are used.
I am sure both options fit someones need and are recommended in a specific context but what is recommended in general, especially when someone does not know enough about the greater application picture and is a beginner?
Example:
I have created a bean that holds an Item from a database with the item id, a name, and an 1d-array. Every array element is a struct that holds a user with its id, its name and its amount of the item. Through a getter i output the data in a table in which i can also change the amount for each user or check a user for deletion from this item.
Where do i put the logic to handle the application users input?
Do i tell the bean to change its array according to the user input?
Or do i create an object that changes the array and writes that new array into the bean?
(All database access (CreateReadUpdateDelete) is handled through a DataAccessObject that gets the bean as an argument. The DAO also contains a gateway method to read more than one record from the database. I use this method to get a table of items, which i can click to create the bean and its data.)
You're observing something known as "anemic domain model". Yes, it's very common, and no, it's not good OO design. Generally, logic should be with the data it operates on.
However, there's also the matter of separation of concerns - you don't want to stuff everything into the domain model. For example, database access is often considered a technically separate layer and not something the domain models themselves should be doing - it seems you already have that separated. What exactly should and should not be part of the domain model depends on the concrete case - good design can't really be expressed in absolute rules.
Another concern is models that get transferred over the network, e.g. between an app server and a web frontend. You want these to contain only the data itself to reduce badnwidth usage and latency. But that doesn't mean they can't contain logic, since methods are not part of the serialized objects. Derived fields and caches are - but they can usually be marked as transient in some way so that they are not transferred.
Your bean should contain both your data and logic.
Data Transfer Objects are used to transfer objects over the network, such as from ColdFusion to a Flex application in the browser. DTOs only contain relevant fields of an object's data.
Where possible you should try to minimise exposing the internal implementation of your bean, (such as the array of user structs) to other objects. To change the array you should just call mutator functions directly on your bean, such as yourBean.addUser(user) which appends the user struct to the internal array.
No need to create a separate DAO with a composed Gateway object for your data access. Just put all of your database access methods (CRUD plus table queries) into a single Gateway object.