Can I scale devices on Google Cloud ML for predictions? - tensorflow

Does Google Cloud ML predictions run on multiple devices, or a single device?
I find my Google ML preductions running at ~7sec but when running my model locally with a Flask server on a 4-core machine it takes ~1.8-2.1 sec.
Is there a way to increase the number of devices/resources I am using on Google Cloud ML?

Yes you can use more resources to serve your predictions. However the feature is still at alpha stage and it will only be available to a selected list of accounts who opted in as "Trusted Testers". Please contact cloudml-feedback#google.com if you need help to setup prediction service using multicores.

Related

uploading data using esp32 to google colab

Is it possible to upload data directly from esp32 to google colab to achieve real-time anomaly detection? I don't want to go through google sheets because it will add delay to my system due to connection problems.
MQTT is a protocol suitable for communicating data from device and to the cloud. There are many libraries for the ESP32 that supports it.
Since MQTT uses a message broker, it allows multiple clients to get the same data. One client can be your model running interactively in Google Colab. Another client could be a data ingestion that stores the data into a database for archival.

Does Hub support integrations for MinIO, AWS, and GCP? If so, how does it work?

I was taking a look at Hub—the dataset format for AI—and noticed that hub integrates with GCP and AWS. I was wondering if it also supported integrations with MinIO.
I know that Hub allows you to directly stream datasets from cloud storage to ML workflows but I’m not sure which ML workflows it integrates with.
I would like to use MinIO over S3 since my team has a self-hosted MinIO instance (aka it's free).
Hub allows you to load data from anywhere. Hub works locally, on Google Cloud, MinIO, AWS as well as Activeloop storage (no servers needed!). So, it allows you to load data and directly stream datasets from cloud storage to ML workflows.
You can find more information about storage authentication in the Hub docs.
Then, Hub allows you to stream data to PyTorch or TensorFlow with simple dataset integrations as if the data were local since you can connect Hub datasets to ML frameworks.

Do you need a TPU instance of Google colab when using a GCP TPU?

I've been enjoying the free colab TPUs and I am looking to upgrade to the GCP ones, but I am a little concerned about the time limits for TPU colabs, I heard colab only allows a certain number of hours for each user.
So I am wondering if I could just use a CPU or GPU instance, and connect to the TPU on my GCP.

Deploy my own tensorflow model on a virtual machine with AWS

I have a Tensorflow model which is working perfectly fine on my laptop (Tf 1.8 on OS HighSierra). However, I wanted to scale my operations up and use Amazon's Virtual Machine to run predictions faster. What is the best way to use my saved model and classify images in jpeg format which are stored locally? Thank you!
you have two options:
1) Start a virtual machine on AWS (known as an Amazon EC2 instance). You can pick from many different instance types, including GPU instances. You'll have full administrative access on this machine, meaning that you can copy you TF model to it and predict just like you would on your own machine.
More details on getting started with EC2 here: https://aws.amazon.com/ec2/getting-started/
I would also recommend using the Deep Learning Amazon Machine Image, which bundles all the popular ML/DL tools as well as the NVIDIA environment for GPU training/prediction : https://aws.amazon.com/machine-learning/amis/
2) If you don't want to manage virtual machines, I'd recommend looking at Amazon SageMaker. You'll be able to import your TF model and to deploy it on fully-managed infrastructure for prediction.
Here's a sample notebook showing you how to bring your own TF model to SageMaker: https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/tensorflow_iris_byom/tensorflow_BYOM_iris.ipynb
Hope this helps.

Which Google Cloud Platform service is the easiest for running Tensorflow?

While working on Udacity Deep Learning assignments, I encountered memory problem. I need to switch to a cloud platform. I worked with AWS EC2 before but now I would like to try Google Cloud Platform (GCP). I will need at least 8GB memory. I know how to use docker locally but never tried it on the cloud.
Is there any ready-made solution for running Tensorflow on GCP?
If not, which service (Compute Engine or Container Engine) would make it easier to get started?
Any other tip is also appreciated!
Summing up the answers:
AI Platform Notebooks - One click Jupyter Lab environment
Deep Learning VMs images - Raw VMs with ML libraries pre-installed
Deep Learning Container Images - Containerized versions of the DLVM images
Cloud ML
Manual installation on Compute Engine. See instructions below.
Instructions to manually run TensorFlow on Compute Engine:
Create a project
Open the Cloud Shell (a button at the top)
List machine types: gcloud compute machine-types list. You can change the machine type I used in the next command.
Create an instance:
gcloud compute instances create tf \
--image container-vm \
--zone europe-west1-c \
--machine-type n1-standard-2
Run sudo docker run -d -p 8888:8888 --name tf b.gcr.io/tensorflow-udacity/assignments:0.5.0 (change the image name to the desired one)
Find your instance in the dashboard and edit default network.
Add a firewall rule to allow your IP as well as protocol and port tcp:8888.
Find the External IP of the instance from the dashboard. Open IP:8888 on your browser. Done!
When you are finished, delete the created cluster to avoid charges.
This is how I did it and it worked. I am sure there is an easier way to do it.
More Resources
You might be interested to learn more about:
Google Cloud Shell
Container-Optimized Google Compute Engine Images
Google Cloud SDK for a more responsive shell and more.
Good to know
"The contents of your Cloud Shell home directory persist across projects between all Cloud Shell sessions, even after the virtual machine terminates and is restarted"
To list all available image versions: gcloud compute images list --project google-containers
Thanks to #user728291, #MattW, #CJCullen, and #zain-rizvi
Google Cloud Machine Learning is open to the world in Beta form today. It provides TensorFlow as a Service so you don't have to manage machines and other raw resources. As part of the Beta release, Datalab has been updated to provide commands and utilities for machine learning. Check it out at: http://cloud.google.com/ml.
Google has a Cloud ML platform in a limited Alpha.
Here is a blog post and a tutorial about running TensorFlow on Kubernetes/Google Container Engine.
If those aren't what you want, the TensorFlow tutorials should all be able to run on either AWS EC2 or Google Compute Engine.
You now can also use pre-configured DeepLearning images. They have everything that is required for the TensorFlow.
This is an old question but there's are new, even easier options now:
If you want to run TensorFlow with Jupyter Lab
GCP AI Platform Notebooks, which gives you on-click access to a Jupyter Lab Notebook with Tensorflow pre-installed (you can also use Pytorch, R, or a few other libraries instead if you prefer).
If you just want to use a raw VM
If you don't care about Jupyer Lab and just want a raw VM with Tensorflow pre-installed, you can instead create a VM using GCP's Deep Learning VM Image. These DLVM images give you a VM with Tensorflow pre-installed and are all setup to use GPUs if you want. (The AI Platform Notebooks use these DLVM images under the hood)
If you'd like to run it on both your laptop and the cloud
Finally, if you want to be able to run tensorflow both on your personal laptop and in the cloud and are comfortable using Docker, you can use GCP's Deep Learning Container Images. It contains the exact same setup as the DLVM images, but packaged as a container instead, so you can launch these anywhere you like.
Extra benefit: If you're running this container image on your laptop, it's 100% free :D
Im not sure there if there is a need for you to stay on the Google Cloud platform. If you are able to use other products you might save a lot of time, and some money.
If you are using TensorFLow I would recommend a platform called TensorPort. It is exclusively for TesnorFlow and is the easy platform I am aware of. Code and data are loaded with git and they provide a python module for automatic toggling of paths between remote and your local machine. They also provide some boiler plate code for setting up distributed computing if you need it. Hope this helps.