I am trying to create a script that is able to evaluate a model on lfw dataset. As a process, I am reading pair of images (using the LFW annotation list), track and crop the face, align it and pass it through a pre-trained facenet model (.pb using tensorflow) and extract the features. The feature vector size = (1,128) and the input image is (160,160).
To evaluate for the verification task, I am using a Siamese architecture. That is, I am passing a pair of images (same or different person) from two identical models ([2 x facenet] , this is equivalent like passing a batch of images with size 2 from a single network) and calculating the euclidean distance of the embeddings. Finally, I am training a linear SVM classifier to extract 0 when the embedding distance is small and 1 otherwise using pair labels. This way I am trying to learn a threshold to be used while testing.
Using this architecture I am getting a score of 60% maximum. On the other hand, using the same architecture on other models (e.g vgg-face), where the features are 4096 [fc7:0] (not embeddings) I am getting 90%. I definitely cannot replicate the scores that I see online (99.x%), but using the embeddings the score is very low. Is there something wrong with the pipeline in general ?? How can I evaluate the embeddings for verification?
Nevermind, the approach is correct, facenet model that is available online is poorly trained and that is the reason for the poor score. Since this model is trained on another dataset and not the original one that is described in the paper (obviously), verification score will be less than expected. However, if you set a constant threshold to the desired value you can probably increase true positives but by sacrificing f1 score.
You can use a similarity search engine. Either using approximated kNN search libraries such as Faiss or Nmslib, cloud-ready similarity search open-source tools such as Milvus, or production-ready managed service such as Pinecone.io.
Related
I have five classes and I want to compare four of them against one and the same class. This isn't a One vs Rest classifier, as for each output I want to score them against one base class.
The four outputs should be: base class vs classA, base class vs classB, etc.
I could do this by having multiple binary classification tasks, but that's wasting computation time if the first layers are BERT preprocessing + pretrained BERT layers, and the only differences between the four classifiers are the last few layers of BERT (finetuned ones) and the Dense layer.
So why not merge the graphs for more performance?
My inputs are four different datasets, each annotated with true/false for each class.
As I understand it, I can re-use most of the pipeline (BERT preprocessing and the first layers of BERT), as those have shared weights. I should then be able to train the last few layers of BERT and the Dense layer on top differently depending on the branch of the classifier (maybe using something like keras.switch?).
I have tried many alternative options including multi-class and multi-label classifiers, with actual and generated (eg, machine-annotated) labels in the case of multiple input labels, different activation and loss functions, but none of the results were acceptable to me (none were as good as the four separate models).
Is there a solution for merging the four different models for more performance, or am I stuck with using 4x binary classifiers?
When you train DNN for specific task it will be (in vast majority of cases) be better than the more general model that can handle several task simultaneously. Saying that, based on my experience the properly trained general model produces very similar results to the original binary ones. Anyways, here couple of suggestions for training strategies (assuming your training datasets for each task are completely different):
Weak supervision approach
Train your binary classifiers, and label your datasets using them (i.e. label with binary classifier trained on dataset 2 datasets [1,3,4]). Then train your joint model as multilabel task using all the newly labeled datasets (don't forget to randomize samples before feeding them to trainer ;) ). Here you will need to experiment if you will use threshold and set a label to 0/1 or use the scores of the binary classifiers.
Create custom loss function that will not penalize if no information provided for certain class. So when your will introduce sample from (say) dataset 2, your loss will be calculated only for the 2nd class.
Of course you can apply both simultaneously. For example, if you know that binary classifier produces scores that are polarized (most results are near 0 or 1), you can use weak labels, and automatically label your data with scores. Now during the second stage penalize loss such that for score x' = 4(x-0.5)^2 (note that you get logits from the model, so you will need to apply sigmoid function). This way you will increase contribution of the samples binary classifier is confident about, and reduce that of less certain ones.
As for releasing last layers of BERT, usually unfreezing upper 3-6 layers is enough. Releasing more layers improves results very little and increases time and memory requirements.
I want to implement a tf model with a tweets-set as input and sentiment (or price movement prediction of the underlying asset) as output. Notice that my input is not a single tweet, but a set of tweets published over the same narrow time frame. The model architecture would look something like this:
I use the same model Trainable Model to predict the single sentiments s_i. I then take the average over these sentiments to compute the overall tweets-set sentiment, which I consider as my output.
Now my question is: Can I implement something like this in tensorflow?
One of the main difficulties I can think of, is that the input shape is not fixed. It depends on the the number of tweets n published in that time frame. I read about tf.placeholder, but it doesn't seem to be suitable here, because it still requires a constant input dimension (How to feed input with changing size in Tensorflow).
Also what possibilities does tensorflow offer in order to define such custom models (not fully connected, custom computations e.g. averaging the sentiments etc.)?
Is there a way to retrieve the weights from a GPflow GPR model?
I do not necessarily need the explicit weights. However, I have two issues that may be solved using the weights:
I would like to compile and send a trained model to a third party. I
would like to do this without sending the training data and without
the third party having access to the training data.
I would like to be able to predict new mean values without
calculating new variances. Currently predict_f calculates both the
mean and the variance, but I only use the mean. I believe I could
speed up my prediction significantly if I didn't calculate the
variance.
I could resolve both of these issues if I could retrieve the weights from the GPR model after training. However, if it is possible to resolve these tasks without ever dealing with explicit weights, that would be even better.
It's not entirely clear what you mean by "explicit weights", but if you mean alpha = Kxx^{-1} y where Kxx is the evaluation of k(x,x') and y is the vector of observation targets, then you can get that by using the Posterior object (see https://github.com/GPflow/GPflow/blob/develop/gpflow/posteriors.py), which you get by calling posterior = model.posterior(). You can then access posterior.alpha.
Re 1.: However, for predictions you still need to be able to compute Kzx the covariance between new test points and the training points, so you will also need to provide the training locations and kernel hyperparameters.
This also means that you cannot rely on this to keep your training data secret, as the third party could simply compute Kxx instead of Kzx and then get back y = Kxx # alpha. You can avoid sharing exact (x,y) training set pairs by using a sparse approximation (this would remove "individual identifiability" at least). But I still wouldn't rely on it for privacy.
Re 2.: The Posterior object already provides much faster predictions; if you only ask for full_cov=False (marginal variances, the default), then you're at worst about a factor ~3 or so slower than predicting just the mean (in practice, I would guesstimate less than 1.5x as slow). As of GPflow 2.3.0, there is no implementation within GPflow of predicting the mean only.
I'm trying to predict sequences of 2D coordinates. But I don't want only the most probable future path but all the most probable paths to visualize it in a grid map.
For this I have traning data consisting of 40000 sequences. Each sequence consists of 10 2D coordinate pairs as input and 6 2D coordinate pairs as labels.
All the coordinates are in a fixed value range.
What would be my first step to predict all the probable paths? To get all probable paths I have to apply a softmax in the end, where each cell in the grid is one class right? But how to process the data to reflect this grid like structure? Any ideas?
A softmax activation won't do the trick I'm afraid; if you have an infinite number of combinations, or even a finite number of combinations that do not already appear in your data, there is no way to turn this into a multi-class classification problem (or if you do, you'll have loss of generality).
The only way forward I can think of is a recurrent model employing variational encoding. To begin with, you have a lot of annotated data, which is good news; a recurrent network fed with a sequence X (10,2,) will definitely be able to predict a sequence Y (6,2,). But since you want not just one but rather all probable sequences, this won't suffice. Your implicit assumption here is that there is some probability space hidden behind your sequences, which affects how they play out over time; so to model the sequences properly, you need to model that latent probability space. A Variational Auto-Encoder (VAE) does just that; it learns the latent space, so that during inference the output prediction depends on sampling over that latent space. Multiple predictions over the same input can then result in different outputs, meaning that you can finally sample your predictions to empirically approximate the distribution of potential outputs.
Unfortunately, VAEs can't really be explained within a single paragraph over stackoverflow, and even if they could I wouldn't be the most qualified person to attempt it. Try searching the web for LSTM-VAE and arm yourself with patience; you'll probably need to do some studying but it's definitely worth it. It might also be a good idea to look into Pyro or Edward, which are probabilistic network libraries for python, better suited to the task at hand than Keras.
I try to use an example LSTM, trained according to Tensorflow LSTM example. This example allows to get perplexity on whole test set. But I need to use the trained model to score (get loglikes) of each sentence separately (to score hypotheses of STT decoder output). I modified reader a bit and used code:
mtests=list()
with tf.name_scope("Test"):
for test_data_item in test_data:
test_input.append(PTBInput(config=eval_config, data=test_data_item, name="TestInput"))
with tf.variable_scope("Model", reuse=True, initializer=initializer):
for test_input_item in test_input:
mtests.append(PTBModel(is_training=False, config=eval_config,
input_=test_input_item))
sv = tf.train.Supervisor(logdir=FLAGS.model_dir)
with sv.managed_session() as session:
checkpoint=tf.train.latest_checkpoint(FLAGS.model_dir)
sv.saver.restore(session, checkpoint)
sys.stderr.write("model restored\n")
for mtest in mtests:
score, test_perplexity = run_epoch_test(session, mtest)
print(score)
So, using that code, I get score of each sentence independently. If I pass 5 sentences, it works ok. But if I pass 1k sentences to this code, it works extremely slow and uses a lot of memory, because I create 1k models mtest. So, could you tell me another way to reach my goal? Thank you.
It seems like the model can take a batch of inputs, which is set to 20 in all cases by default. You should be able to feed a larger batch of sentences to one test model to get the output for all of them without having to create multiple models instances. This probably involves some experimenting with the reader, which you are already familiar with.