Standard ML Syntax - syntax-error

I'm new to Standard ML and trying to write the following code
fun whilestat test stmt1 =
(fn x => if (test x) then (stmt1 x;whilestat test stmt1 ) else (x) );
The issue is that it gives me the following error
w.sml:21.6-22.82 Error: right-hand-side of clause doesn't agree with function result type [circularity]
expression: ('Z -> 'Y) -> 'Z -> 'Z
result type: ('Z -> 'Y) -> 'Z
in declaration:
whilestat2 = (fn arg => (fn <pat> => <exp>))
uncaught exception Error
raised at: ../compiler/TopLevel/interact/evalloop.sml:66.19-66.27
../compiler/TopLevel/interact/evalloop.sml:44.55
../compiler/TopLevel/interact/evalloop.sml:292.17-292.20
Im just trying to emaulate a while condition where if the staement is true then it recurses, else returns the value.

The issue lies in the return type of whilestat. In the then branch, you return a function, whereas in the else branch, you return return an arbitrary piece of data. I think you simply forgot to pass all of the arguments when you recurse in the then branch.
Here's how I would write it (notice also that there's no need to use fn x => ..., which I think contributed to your confusion).
fun whilestat test stmt1 x =
if test x
then (stmt1 x; whilestat test stmt1 x)
else x
In the future, you might find it helpful to explicitly annotate types in your source code, to double check your reasoning. I found your bug by trying to fill in the ??? below:
fun whilestat (test : 'a -> bool) (stmt1 : 'a -> unit) : ??? =
...

Related

How to handle "-> empty" in Kotlins "when"

Lets assume the following when-statement:
when(a)
{
x -> doNothing()
y -> doSomething()
else -> doSomethingElse()
}
Now i'm looking to eliminate the boilerplate-function "doNothing()", e.g.:
x -> //doesn't compile
x -> null //Android Studio warning: Expression is unused
x -> {} //does work, but my corporate codestyle places each '{‘ in a new line, looking terrible
//also, what is this actually doing?
Any better ideas?
I can't just eliminate x -> completely, as that would lead to else -> doSthElse()
Edit: directly after writing this Question, i figured out a possible answer x -> Unit. Any shortcomings with that?
Kotlin has two existing possibilities to express a "do nothing" construct in when statements. Either Unit or an empty pair of braces. An empty block will just execute nothing.
There's nothing else planned in that regard (see here).
To answer your question regarding "also, what is this actually doing?" for the empty block, looking at the bytecode and translating it into Java helps:
val x = 33
when(x)
{
1 -> {}
2 -> Int
3 -> Unit
else -> Double
}
Translates to
int x = 33;
switch(x) {
case 1:
case 3:
break;
case 2:
IntCompanionObject var10000 = IntCompanionObject.INSTANCE;
break;
default:
DoubleCompanionObject var1 = DoubleCompanionObject.INSTANCE;
}

Kotlin flatMapTo does not compile

I want to flat map a Collection of Sets to a single Set. I have the following code which does not compile in IntelliJ IDEA. I can't tell why:
listOf(HashSet<String>()).flatMapTo(HashSet<String>()) { it.iterator() as Iterator<String> }
There is a very confusing error message on the lambda in the end which says:
Type mismatch. Required: (kotlin.collections.HashSet<String> /* =
java.util.HashSet<String> /) → Iterable<String> Found:
(kotlin.collections.HashSet<String> / = java.util.HashSet<String> */)
→ Iterator<String>
But they are both completely the same? I am confused as to why that doesn't want to work.
There is also an error message shown on the flatMapTo function and says:
Type inference failed:
inline fun <T, R, C : MutableCollection<in R>> Iterable<T>.flatMapTo (
destination: C, transform: (T) → Iterable<R> ) : C cannot be applied
to
receiver: List<kotlin.collections.HashSet<String> /* =
java.util.HashSet<String> &ast;/> arguments: (
kotlin.collections.HashSet<String> /* = java.util.HashSet<String> &ast;/,
(kotlin.collections.HashSet<String> /* = java.util.HashSet<String> &ast;/)
→ Iterator<String> )
*Hope I didn't forget any special characters in the quotes. had to replace < and some * with html entities.*
Your lambda returns an Iterator<String>. It's supposed to return an Iterable<String>. A Set<String> is already an Iterable<String>.
All you need is
listOf(HashSet<String>()).flatMapTo(HashSet()) { it }

SML converting a string to an int with error catching

So what I want to do is to convert a string into an int and do some error catching on it. I would also like to know where I would put what I want it to do after it fails if it does.
I know how to convert, but I am not sure how to catch it and where the code will jump to after the error
I believe the method for converting it Int.fromString(x)
Thank you.
SML has two approaches to error handling. One, based on raise to raise errors and handle to catch the error, is somewhat similar to how error handling works in languages like Python or Java. It is effective, but the resulting code tends to lose some of its functional flavor. The other method is based on the notion of options. Since the return type of Int.fromString is
string -> int option
it makes the most sense to use the option-based approach.
An int option is either SOME n, where n is and integer, or it is NONE. The function Int.fromString returns the latter if it fails in its attempt to convert the string to an integer. The function which calls Int.fromString can explicitly test for NONE and use the valOf to extract the value in the case that the return value is of the form SOME n. Alternatively, and somewhat more idiomatically, you can use pattern matching in a case expression. Here is a toy example:
fun squareString s =
case Int.fromString(s) of
SOME n => Int.toString (n * n) |
NONE => s ^ " isn't an integer";
This function has type string -> string. Typical output:
- squareString "4";
val it = "16" : string
- squareString "Bob";
val it = "Bob isn't an integer" : string
Note that the clause which starts NONE => is basically an error handler. If the function that you are defining isn't able to handle such errors, it could pass the buck. For example:
fun squareString s =
case Int.fromString(s) of
SOME n => SOME (Int.toString (n * n))|
NONE => NONE;
This has type string -> string option with output now looking like:
- squareString "4";
val it = SOME "16" : string option
- squareString "Bob";
val it = NONE : string option
This would make it the responsibility of the caller to figure out what to do with the option.
The approach to error handling that John explains is elaborated in the StackOverflow question 'Unpacking' the data in an SML DataType without a case statement. The use-case there is a bit different, since it also involves syntax trees, but the same convenience applies for smaller cases:
fun squareString s = Int.fromString s >>= (fn i => SOME (i*i))
Assuming you defined the >>= operator as:
infix 3 >>=
fun NONE >>= _ = NONE
| (SOME a) >>= f = f a
The drawback of using 'a option for error handling is that you have to take into account, every single time you use a function that has this return type, whether it errored. This is not unreasonable. It's like mandatory null-checking. But it comes at the cost of not being able to easily compose your functions (using e.g. the o operator) and a lot of nested case-ofs:
fun inputSqrt s =
case TextIO.inputLine TextIO.stdIn of
NONE => NONE
| SOME s => case Real.fromString s of
NONE => NONE
| SOME x => SOME (Math.sqrt x) handle Domain => NONE
A workaround is that you can build this constant error handling into your function composition operator, as long as all your functions share the same way of expressing errors, e.g. using 'a option:
fun safeSqrt x = SOME (Math.sqrt x) handle Domain => NONE
fun inputSqrt () =
TextIO.inputLine TextIO.stdIn >>=
(fn s => Real.fromString s >>=
(fn x => safeSqrt x))
Or even shorter by applying Eta conversion:
fun inputSqrt () = TextIO.inputLine TextIO.stdIn >>= Real.fromString >>= safeSqrt
This function could fail either because of a lack of input, or because the input didn't convert to a real, or because it was negative. Naturally, this error handling isn't smart enough to say what the error was, so you might want to extend your functions from using an 'a option to using an ('a, 'b) either:
datatype ('a, 'b) either = Left of 'a | Right of 'b
infix 3 >>=
fun (Left msg) >>= _ = Left msg
| (Right a) >>= f = f a
fun try (SOME x) _ = Right x
| try NONE msg = Left msg
fun inputLine () =
try (TextIO.inputLine TextIO.stdIn) "Could not read from stdIn."
fun realFromString s =
try (Real.fromString s) "Could not derive real from string."
fun safeSqrt x =
try (SOME (Math.sqrt x) handle Domain => NONE) "Square root of negative number"
fun inputSqrt () =
inputLine () >>= realFromString >>= safeSqrt
And trying this out:
- ​inputSqrt ();
​9
> val it = Right 3.0 : (string, real) either
- ​inputSqrt ();
​~42
> val it = Left "Square root of negative number" : (string, real) either
- ​inputSqrt ();
Hello
> val it = Left "Could not derive real from string." : (string, real) either
- (TextIO.closeIn TextIO.stdIn; inputSqrt ());
> val it = Left "Could not read from stdIn." : (string, real) either

Propositions vs. boolean values for input validation

I have the following code:
doSomething : (s : String) -> (not (s == "") = True) -> String
doSomething s = ?doSomething
validate : String -> String
validate s = case (not (s == "")) of
False => s
True => doSomething s
After checking the input is not empty I would like to pass it to a function which accepts only validated input (not empty Strings).
As far as I understand the validation is taking place during runtime
but the types are calculated during compile time - thats way it doesn't work. Is there any workaround?
Also while playing with the code I noticed:
:t (("la" == "") == True)
"la" == "" == True : Bool
But
:t (("la" == "") = True)
"la" == "" = True : Type
Why the types are different?
This isn't about runtime vs. compile-time, since you are writing two branches in validate that take care, statically, of both the empty and the non-empty input cases; at runtime you merely choose between the two.
Your problem is Boolean blindness: if you have a value of type Bool, it is just that, a single bit that could have gone either way. This is what == gives you.
= on the other hand is for propositional equality: the only constructor of the type(-as-proposition) a = b is Refl : a = a, so by pattern-matching on a value of type a = b, you learn that a and b are truly equal.
I was able to get your example working by passing the non-equality as a proposition to doSomething:
doSomething : (s : String) -> Not (s = "") -> String
doSomething "" wtf = void $ wtf Refl
doSomething s nonEmpty = ?doSomething
validate : String -> String
validate "" = ""
validate s = doSomething s nonEmpty
where
nonEmpty : Not (s = "")
nonEmpty Refl impossible
As far as I understand the validation is taking place during runtime
but the types are calculated during compile time - thats way it
doesn't work.
That's not correct. It doesn't work because
We need the with form to perform dependent pattern matching, i. e. perform substitution and refinement on the context based on information gained from specific data constructors.
Even if we use with here, not (s == "") isn't anywhere in the context when we do the pattern match, therefore there's nothing to rewrite (in the context), and we can't demonstrate the not (s == "") = True equality later when we'd like to call doSomething.
We can use a wrapper data type here that lets us save a proof that a specific pattern equals the original expression we matched on:
doSomething : (s : String) -> (not (s == "") = True) -> String
doSomething s = ?doSomething
data Inspect : a -> Type where
Match : {A : Type} -> {x : A} -> (y : A) -> x = y -> Inspect x
inspect : {A : Type} -> (x : A) -> Inspect x
inspect x = Match x Refl
validate : String -> String
validate s with (inspect (not (s == "")))
| Match True p = doSomething s p
| Match False p = s

Can I avoid committing to particular types in a module type and still get pattern matching?

I have two module types:
module type ORDERED =
sig
type t
val eq : t * t -> bool
val lt : t * t -> bool
val leq : t * t -> bool
end
module type STACK =
sig
exception Empty
type 'a t
val empty : 'a t
val isEmpty : 'a t -> bool
val cons : 'a * 'a t -> 'a t
val head : 'a t -> 'a
val tail : 'a t -> 'a t
val length : 'a t -> int
end
I want to write a functor which "lifts" the order relation from the basic ORDERED type to STACKs of that type. That can be done by saying that, for example, two stacks of elements will be equal if all its individual elements are equal. And that stacks s1 and s2 are s.t. s1 < s2 if the first of each of their elements, e1 and e2, are also s.t. e1 < e2, etc.
Now, if don't commit to explicitly defining the type in the module type, I will have to write something like this (or won't I?):
module StackLift (O : ORDERED) (S : STACK) : ORDERED =
struct
type t = O.t S.t
let rec eq (x,y) =
if S.isEmpty x
then if S.isEmpty y
then true
else false
else if S.isEmpty y
then false
else if O.eq (S.head x,S.head y)
then eq (S.tail x, S.tail y)
else false
(* etc for lt and leq *)
end
which is a very clumsy way of doing what pattern matching serves so well. An alternative would be to impose the definition of type STACK.t using explicit constructors, but that would tie my general module somewhat to a particular implementation, which I don't want to do.
Question: can I define something different above so that I can still use pattern matching while at the same time keeping the generality of the module types?
As an alternative or supplement to the other access functions, the module can provide a view function that returns a variant type to use in pattern matching.
type ('a, 's) stack_view = Nil | Cons of 'a * 's
module type STACK =
sig
val view : 'a t -> ('a , 'a t) stack_view
...
end
module StackLift (O : ORDERED) (S : STACK) : ORDERED =
struct
let rec eq (x, y) =
match S.view x, S.view y with
Cons (x, xs), Cons (y, ys) -> O.eq (x, y) && eq (xs, ys)
| Nil, Nil -> true
| _ -> false
...
end
Any stack with a head and tail function can have a view function too, regardless of the underlying data structure.
I believe you've answered your own question. A module type in ocaml is an interface which you cannot look behind. Otherwise, there's no point. You cannot keep the generality of the interface while exposing details of the implementation. The only thing you can use is what's been exposed through the interface.
My answer to your question is yes, there might be something you can do to your definition of stack, that would make the type of a stack a little more complex, thereby making it match a different pattern than just a single value, like (val,val) for instance. However, you've got a fine definition of a stack to work with, and adding more type-fluff is probably a bad idea.
Some suggestions with regards to your definitions:
Rename the following functions: cons => push, head => peek, tail => pop_. I would also add a function val pop : 'a t -> 'a * 'a t, in order to combine head and tail into one function, as well as to mirror cons. Your current naming scheme seems to imply that a list is backing your stack, which is a mental leak of the implementation :D.
Why do eq, lt, and leq take a pair as the first parameter? In constraining the type of eq to be val eq : 'a t * 'a t -> 'a t, you're forcing the programmer that uses your interface to keep around one side of the equality predicate until they've got the other side, before finally applying the function. Unless you have a very good reason, I would use the default curried form of the function, since it provides a little more freedom to the user (val eq : 'a t -> 'a t -> 'a t). The freedom comes in that they can partially apply eq and pass the function around instead of the value and function together.