Reference outside the sealed class in Kotlin? - kotlin

I'm trying to create a class that uses its own state to operate on the state of an external object that it holds a reference to. The external object can be of class A or B, which are similar, but not controlled by the author. So a sealed class is created to access their common attributes, per this earlier answer from #SimY4.
// *** DOES NOT COMPILE ***
class A { // foreign class whose structure is not modifiable
val prop get()= "some string made the Class-A way"
}
class B { // foreign class whose structure is not modifiable
val prop get()= "some string made the Class-B way"
}
data class ABTool (val obj:AB, val i:Int, val j:Int) {
// class that manipulates i and j and uses them to do
// things with AB's "common" attributes through the sealed class AB
sealed class AB { // substitute for a common interface
abstract val prop: String
abstract val addmagic: String
data class BoxA(val o:A) : AB() {
override val prop get()= o.prop
override val addmagic get() = prop + this#???.magic // HOW TO REFERENCE?
}
data class BoxB(val o:B) : AB() {
override val prop get()= o.prop
override val addmagic get() = this#???.magic + prop // HOW TO REFERENCE?
}
}
val magic get()= "magic: ${i*j}"
}
The problem now is that I've figured out I can't operate on the external object in the way I want, because a sealed class can't refer to its outer class members. Is there a better way to make this work, even if using a different approach (other than sealed class), while:
not changing foreign classes A or B;
respecting that A and B (and many others in the real case) are similar, so I'm trying to write one tool that calculates and adds magic to A and B with the same code base; and
noting that although the ABTool tools are the same, the way they are applied to add magic is slightly different in A vs. B, just as the to access the conceptually common elements of A and B may be different.
Any thoughts on this or a similar workaround? Maybe a more functional approach that I haven't conceived yet?

If ABTool being a sealed class is something you can give up, then here's a solution:
Replace sealed with inner abstract at the ABTool declaration;
Mark BoxA and BoxB as inner as well;
data class ABTool(val obj: AB, val i: Int, val j: Int) {
inner abstract class AB {
abstract val prop: String
abstract val addmagic: String
inner class BoxA(val o: A) : AB() {
override val prop get() = o.prop
override val addmagic get() = prop + magic
}
inner class BoxB(val o: B) : AB() {
override val prop get() = o.prop
override val addmagic get() = magic + prop
}
}
val magic get() = "magic: ${i * j}"
}
(alternatively, instead of marking AB as inner, move BoxA and BoxB out of it to the scope of ABTool)

An alternative would be to add an ABTool field to AB:
sealed class AB(val tool: ABTool) {
abstract val prop: String
abstract val addmagic: String
data class BoxA(val o:A, tool: ABTool) : AB(tool) {
override val prop get()= o.prop
override val addmagic get() = prop + tool.magic
}
data class BoxB(val o:B, tool: ABTool) : AB(tool) {
override val prop get()= o.prop
override val addmagic get() = tool.magic + prop
}
}
and pass this when creating it from ABTool. That's just what inner really does, after all.
In this specific case the field happens to be unused in AB itself and so you can remove it from there and make it val in BoxA and BoxB.

Related

Uniformly delegated properties in kotlin

When you have a backing object that you would like to wrap and delegate all properties with the same delegate logic, is there some way to generically describe a class implementation with all the properties delegated the same way? Take the example below:
class Subject<T, U>(
private val prop : KMutableProperty0<U>
) {
operator fun getValue(caller: T, prop: KProperty<*>) : U = this.prop.get()
operator fun setValue(caller: T, prop: KProperty<*>, value : U) {
// dostuff
this.prop.set(value)
}
}
interface Test {
val prop1 : String
val prop2 : String
}
#Serializable
class TestImpl(
override var prop1: String,
override var prop2: String
) : Test
// I don't want to have to write this boilerplate every time I need to delegate logic from a serializeable data object
class Wrapper( val test : TestImpl) : Test {
override var prop1 by Subject(testImpl::prop1)
override var prop2 by Subject(testImpl::prop2)
}
Is there any language feature that would let me write something like this:
class GenericWrapper<T , U : T>(val impl : U) : T /* can't do this obviously */{
// for each property on T, overwrite the property and delegate accordingly
}
The only thing I can think of at this point is writing my own compiler plugin, but is this the only option?

Kotlin class generics without duplication

Consider an abstract class:
abstract class PubSubSubscriber<T : Any>(private val topic: KClass<T>) : BackgroundFunction<PubSubMessage> {
abstract fun consume(payload: T)
override fun accept(message: PubSubMessage, context: Context) {
val json = String(Base64.getDecoder().decode(message.data.toByteArray()))
val payload = objectMapper.readValue(json, topic.java)
consume(payload)
}
}
And implementation:
class MySubscriber : PubSubSubscriber<Payload>(Payload::class) {
Is there a way to define such abstract class so that I don't have to repeat twice the Payload and Payload::class in the class definition?
Yes, with some reflection.
At construction time, we can extract the type parameter and assign it to a property that no longer needs to be given to the constructor:
abstract class PubSubSubscriber<T : Any> {
val topic: KClass<T> = extractTypeParam<T>(0).kotlin
private fun <X> extractTypeParam(paramIdx: Int): Class<X> {
require(PubSubSubscriber::class.java == javaClass.superclass) {
"PubSubSubscriber subclass $javaClass should directly extend PubSubSubscriber"
}
#Suppress("UNCHECKED_CAST")
return (javaClass.genericSuperclass as ParameterizedType).actualTypeArguments[paramIdx] as Class<X>
}
abstract fun consume(payload: T)
override fun accept(message: PubSubMessage, context: Context) {
val json = String(Base64.getDecoder().decode(message.data.toByteArray()))
val payload = objectMapper.readValue(json, topic.java)
consume(payload)
}
Note the following limitations:
A) this solution works only if MySubscriber directly extends from PubSubSubscriber. However, the given code can detect if that's not the case and warn about it (at runtime). In such cases, there are the following solutions:
MySubscriber falls back to providing a duplicate argument (essentially what you already had)
the direct superclass of MySubscriber can provide a similar detection mechanism
B) You call reflection code every time a MySubscriber instance is created. This may be too slow in certain contexts, but for many this is unproblematic.

Kotlin generics with in produces Type mismatch when compiling

I´m working on a code with generics and when I use an in I got a TypeMismatch when compiling.
The code is the following:
open class A
class B:A()
data class DataContainer(val a:String,
val b:A)
interface Repo<T:A>{
fun setParam(param:T)
fun getParam():T
}
abstract class RepoImp<T:A>:Repo<T>{
private lateinit var parameter:T
override fun setParam(param: T) {
parameter = param
}
override fun getParam(): T {
return parameter
}
}
class BRepo:RepoImp<B>()
class Repo2(val repo: Repo<in A>){
fun process(b:DataContainer){
repo.setParam(b.b)
}
}
val repoB = BRepo()
val repo2 = Repo2(repoB)// Here I got: Type mismatch: inferred type is BRepo but Repo<in A> was expected
I also tried changing the attribute repo from Repo2 to Repo<*>
Since BRepo is a Repo<B>, it is not a Repo<in A>, (but it would satisfy Repo<out A>).
In other words, a Repo<in A> must be able to accept setParam(A()), but BRepo.setParam() can only accept a B or subclass of B.
Or to put it another way, BRepo is a Repo<B>, which is a tighter restriction on the type than Repo<A> when it comes to writing values (but looser restriction when reading values).
The reason class Repo2(val repo: Repo<*>) doesn't work is that Repo<*> is essentially a Repo<in Nothing/out A>. You can't call setParam() on a Repo<*> with any kind of object.
There's a design flaw in your code that you can't fix simply by changing Repo2's constructor signature. As it stands now, Repo2 needs to be able write A's to the object you pass to it, and a BRepo by definition does not support writing A's, only B's. You will need to make at least one of your class's definitions more flexible about types.
It might be easier to understand the covariance limitation with more common classes:
val stringList: MutableList<String> = ArrayList()
var anyList: MutableList<in Any> = ArrayList()
anyList.add(5) // ok
anyList = stringList // Compiler error.
// You wouldn't be able to call add(5) on an ArrayList<String>
Basically MutableList<String> is not a MutableList<in Any> the same way Repo<B> is not a Repo<in A>.
The Repo2 class expect to consume only type A, use Repo2<T : A>(val repo: Repo<in T>)
open class A
class B : A()
class C : A()
class D : A()
class BRepo : RepoImp<B>()
class CRepo : RepoImp<C>()
class DRepo : RepoImp<D>()
interface Repo<T : A> {
fun setParam(param: T)
fun getParam(): T
}
abstract class RepoImp<T : A> : Repo<T> {
private lateinit var parameter: T
override fun setParam(param: T) {
parameter = param
}
override fun getParam(): T {
return parameter
}
}
class Repo2<T : A>(val repo: Repo<in T>) {
fun process(b: DataContainer<T>) {
repo.setParam(b.b)
}
}
data class DataContainer<T : A>(
val a: String,
val b: T
)
fun main() {
val repoB = BRepo()
val repoC = CRepo()
val repoD = DRepo()
val repo2 = Repo2(repoB)
val repo3 = Repo2(repoC)
val repo4 = Repo2(repoD)
repo2.process(DataContainer("Process B type", B()))
repo3.process(DataContainer("Process C type", C()))
repo4.process(DataContainer("Process D type", D()))
println(repo2.repo.getParam())
println(repo3.repo.getParam())
println(repo4.repo.getParam())
}

Searching a workaround for kotlin empty data class primary constructor

With given kotlin code :
sealed class Event(val id:String= UUID.randomUUID().toString(), val timestamp:Instant = Instant.now())
data class BarEvent(val additionalInfo:String):Event()
object FooEvent:Event()
// data class CorrectFooEvent():Event() // invalid kotlin
fun main(args: Array<String>) {
val b1 = BarEvent("b1")
val f1 = FooEvent
Thread.sleep(1000)
val b2 = BarEvent("b2")
val f2 = FooEvent
println("${b1.id} ${b1.timestamp} $b1")
println("${f1.id} ${f1.timestamp} $f1")
println("${b2.id} ${b2.timestamp} $b2")
println("${f2.id} ${f2.timestamp} $f2")
}
There is no issue with BarEvent.
But as FooEvent has no more parameter than the ones in Event, I would like it to have empty constructor. It's not authorized for data class, so I made it an object. But object is singleton, so it doesn't behave as an instanciated event.
The only workaround that I see (keeping the class as a data class) is something like :
sealed class Event(open val id:String= UUID.randomUUID().toString(), open val timestamp:Instant = Instant.now())
data class FooEvent(override val id:String= UUID.randomUUID().toString(), override val timestamp:Instant = Instant.now()):Event()
But it's not very elegant.
Just change FooEvent to a normal class, and add (or generate them using your IDE) toString(), hashCode() and equals(Object) if needed:
class FooEvent: Event() {
override hashCode() = ...
override equals(other: Object) {
...
}
override toString() = ...
}
To make the event a data class, simply add an unused property to it. Not pretty, but as short as it can be in Kotlin at the moment:
data class FooEvent(val dummy: Unit = Unit) : Event()
There seems to be no intention to remove this limitation soon:
Data class without arguments deprecated in 1.0. Why?
Suggestion for parameterless data class

How to obtain all subclasses of a given sealed class?

Recently we upgraded one of our enum class to sealed class with objects as sub-classes so we can make another tier of abstraction to simplify code. However we can no longer get all possible subclasses through Enum.values() function, which is bad because we heavily rely on that functionality. Is there a way to retrieve such information with reflection or any other tool?
PS: Adding them to a array manually is unacceptable. There are currently 45 of them, and there are plans to add more.
This is how our sealed class looks like:
sealed class State
object StateA: State()
object StateB: State()
object StateC: State()
....// 42 more
If there is an values collection, it will be in this shape:
val VALUES = setOf(StateA, StateB, StateC, StateC, StateD, StateE,
StateF, StateG, StateH, StateI, StateJ, StateK, StateL, ......
Naturally no one wants to maintain such a monster.
In Kotlin 1.3+ you can use sealedSubclasses.
In prior versions, if you nest the subclasses in your base class then you can use nestedClasses:
Base::class.nestedClasses
If you nest other classes within your base class then you'll need to add filtering. e.g.:
Base::class.nestedClasses.filter { it.isFinal && it.isSubclassOf(Base::class) }
Note that this gives you the subclasses and not the instances of those subclasses (unlike Enum.values()).
With your particular example, if all of your nested classes in State are your object states then you can use the following to get all of the instances (like Enum.values()):
State::class.nestedClasses.map { it.objectInstance as State }
And if you want to get really fancy you can even extend Enum<E: Enum<E>> and create your own class hierarchy from it to your concrete objects using reflection. e.g.:
sealed class State(name: String, ordinal: Int) : Enum<State>(name, ordinal) {
companion object {
#JvmStatic private val map = State::class.nestedClasses
.filter { klass -> klass.isSubclassOf(State::class) }
.map { klass -> klass.objectInstance }
.filterIsInstance<State>()
.associateBy { value -> value.name }
#JvmStatic fun valueOf(value: String) = requireNotNull(map[value]) {
"No enum constant ${State::class.java.name}.$value"
}
#JvmStatic fun values() = map.values.toTypedArray()
}
abstract class VanillaState(name: String, ordinal: Int) : State(name, ordinal)
abstract class ChocolateState(name: String, ordinal: Int) : State(name, ordinal)
object StateA : VanillaState("StateA", 0)
object StateB : VanillaState("StateB", 1)
object StateC : ChocolateState("StateC", 2)
}
This makes it so that you can call the following just like with any other Enum:
State.valueOf("StateB")
State.values()
enumValueOf<State>("StateC")
enumValues<State>()
UPDATE
Extending Enum directly is no longer supported in Kotlin. See
Disallow to explicitly extend Enum class : KT-7773.
With Kotlin 1.3+ you can use reflection to list all sealed sub-classes without having to use nested classes: https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-class/sealed-subclasses.html
I asked for some feature to achieve the same without reflection: https://discuss.kotlinlang.org/t/list-of-sealed-class-objects/10087
Full example:
sealed class State{
companion object {
fun find(state: State) =
State::class.sealedSubclasses
.map { it.objectInstance as State}
.firstOrNull { it == state }
.let {
when (it) {
null -> UNKNOWN
else -> it
}
}
}
object StateA: State()
object StateB: State()
object StateC: State()
object UNKNOWN: State()
}
A wise choice is using ServiceLoader in kotlin. and then write some providers to get a common class, enum, object or data class instance. for example:
val provides = ServiceLoader.load(YourSealedClassProvider.class).iterator();
val subInstances = providers.flatMap{it.get()};
fun YourSealedClassProvider.get():List<SealedClass>{/*todo*/};
the hierarchy as below:
Provider SealedClass
^ ^
| |
-------------- --------------
| | | |
EnumProvider ObjectProvider ObjectClass EnumClass
| |-------------------^ ^
| <uses> |
|-------------------------------------------|
<uses>
Another option, is more complicated, but it can meet your needs since sealed classes in the same package. let me tell you how to archive in this way:
get the URL of your sealed class, e.g: ClassLoader.getResource("com/xxx/app/YourSealedClass.class")
scan all jar entry/directory files in parent of sealed class URL, e.g: jar://**/com/xxx/app or file://**/com/xxx/app, and then find out all the "com/xxx/app/*.class" files/entries.
load filtered classes by using ClassLoader.loadClass(eachClassName)
check the loaded class whether is a subclass of your sealed class
decide how to get the subclass instance, e.g: Enum.values(), object.INSTANCE.
return all of instances of the founded sealed classes
If you want use it at child class try this.
open class BaseSealedClass(val value: String, val name: Int) {
companion object {
inline fun<reified T:BaseSealedClass> valueOf(value: String): T? {
return T::class.nestedClasses
.filter { clazz -> clazz.isSubclassOf(T::class) }
.map { clazz -> clazz.objectInstance }
.filterIsInstance<T>()
.associateBy { it.value }[value]
}
inline fun<reified T:BaseSealedClass> values():List<T> =
T::class.nestedClasses
.filter { clazz -> clazz.isSubclassOf(T::class) }
.map { clazz -> clazz.objectInstance }
.filterIsInstance<T>()
}
}
#Stable
sealed class Theme(value: String, name: Int): BaseSealedClass(value, name) {
object Auto: Theme(value = "auto", name = R.string.setting_general_theme_auto)
object Light: Theme(value= "light", name = R.string.setting_general_theme_light)
object Dark: Theme(value= "dark", name = R.string.setting_general_theme_dark)
companion object {
fun valueOf(value: String): Theme? = BaseSealedClass.valueOf(value)
fun values():List<Theme> = BaseSealedClass.values()
}
}
For a solution without reflection this is a library that supports generating a list of types to sealed classes at compile time:
https://github.com/livefront/sealed-enum
The example in the docs
sealed class Alpha {
object Beta : Alpha()
object Gamma : Alpha()
#GenSealedEnum
companion object
}
will generate the following object:
object AlphaSealedEnum : SealedEnum<Alpha> {
override val values: List<Alpha> = listOf(
Alpha.Beta,
Alpha.Gamma
)
override fun ordinalOf(obj: Alpha): Int = when (obj) {
Alpha.Beta -> 0
Alpha.Gamma -> 1
}
override fun nameOf(obj: AlphaSealedEnum): String = when (obj) {
Alpha.Beta -> "Alpha_Beta"
Alpha.Gamma -> "Alpha_Gamma"
}
override fun valueOf(name: String): AlphaSealedEnum = when (name) {
"Alpha_Beta" -> Alpha.Beta
"Alpha_Gamma" -> Alpha.Gamma
else -> throw IllegalArgumentException("""No sealed enum constant $name""")
}
}
The short version is
State::class.sealedSubclasses.mapNotNull { it.objectInstance }