Does impala scan (READ_LATEST mode) inconsistency only arise during leader change? - impala

When I try to use impala to transfer massive data (about 100G) for one time and select count(1) immediately, I get the wrong total count. Then I execute the same sql again, the total count is correct.
I want to know besides leader change, is there have any other internal ops can cause the scan inconsistency? If I change the impala configure kudu_read_mode: READ_LATEST to kudu_read_mode: READ_AT_SNAPSHOT, what's the timestamp that the impala will transimit? If the READ_AT_SNAPSHOT can resolve the issue?
I am using the impala 2.10.0 + kudu 1.5.0.

Related

ERROR : FAILED: Error in acquiring locks: Error communicating with the metastore org.apache.hadoop.hive.ql.lockmgr.LockException

Getting the Error in acquiring locks, when trying to run count(*) on partitioned tables.
The table has 365 partitions when filtered on <= 350 partitions, the queries are working fine.
when tried to include more partitions for the query, it's failing with the error.
working on Hive-managed ACID tables, with the following default values
hive.support.concurrency=true //cannot make it as false, it's throwing <table> is missing from the ValidWriteIdList config: null, should be true for ACID read and write.
hive.lock.manager=org.apache.hadoop.hive.ql.lockmgr.zookeeper.ZooKeeperHiveLockManager
hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager
hive.txn.strict.locking.mode=false
hive.exec.dynamic.partition.mode=nonstrict
Tried increasing/decreasing values for these following with a beeline session.
hive.lock.numretries
hive.unlock.numretries
hive.lock.sleep.between.retries
hive.metastore.batch.retrieve.max={default 300} //changed to 10000
hive.metastore.server.max.message.size={default 104857600} // changed to 10485760000
hive.metastore.limit.partition.request={default -1} //did not change as -1 is unlimited
hive.metastore.batch.retrieve.max={default 300} //changed to 10000.
hive.lock.query.string.max.length={default 10000} //changed to higher value
Using the HDI-4.0 interactive-query-llap cluster, the meta-store is backed by default sql-server provided along.
The problem is NOT due to service tier of the hive metastore database.
It is most probably due to too many partitions in one query based on the symptom.
I meet the same issue several times.
In the hivemetastore.log, you shall able to see such error:
metastore.RetryingHMSHandler: MetaException(message:Unable to update transaction database com.microsoft.sqlserver.jdbc.SQLServerException: The incoming request has too many parameters. The server supports a maximum of 2100 parameters. Reduce the number of parameters and resend the request.
at com.microsoft.sqlserver.jdbc.SQLServerException.makeFromDatabaseError(SQLServerException.java:254)
at com.microsoft.sqlserver.jdbc.SQLServerStatement.getNextResult(SQLServerStatement.java:1608)
at com.microsoft.sqlserver.jdbc.SQLServerPreparedStatement.doExecutePreparedStatement(SQLServerPreparedStatement.java:578)
This is due to in Hive metastore, each partition involved in the hive query requires at most 8 parameters to acquire a lock.
Some possible workarounds:
Decompose the the query into multiple sub-queries to read from fewer
partitions.
Reduce the number of partitions by setting different partition keys.
Remove partitioning if partition keys don't have any filters.
Following are the parameters which manage the batch size for INSERT query generated by the direct SQL. Their default value is 1000. Set both of them to 100 (as a good starting point) in the Custom hive-site section of Hive configs via. Ambari and restart ALL Hive related components (including Hive metastore).
hive.direct.sql.max.elements.values.clause=100
hive.direct.sql.max.elements.in.clause=100
We also faced the same error in HDInsight and after doing many configuration changes similar to what you have done, the only thing that worked is scaling our Hive Metastore SQL DB server.
We had to scale it all the way to a P2 tier with 250 DTUs for our workloads to work without these Lock Exceptions. As you may know, with the tier and DTU count, the SQL server's IOPS and response time improves thus we suspected that the Metastore performance was the root cause for these Lock Exceptions with the increase in workloads.
Following link provides information about the DTU based performance variation in SQL servers in Azure.
https://learn.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers-dtu
Additionally as I know, the default Hive metastore that gets provisioned when you opt to not provide an external DB in cluster creation is just an S1 tier DB. This would not be suitable for any high capacity workloads. At the same time, as a best practice always provision your metastores external to the cluster and attach at cluster provisioning time, as this gives you the flexibility to connect the same Metastore to multiple clusters (so that your Hive layer schema can be shared across multiple clusters, e.g. Hadoop for ETLs and Spark for Processing / Machine Learning), and you have the full control to scale up or down your metastore as per your need anytime.
The only way to scale the default metastore is by engaging the Microsoft support.
We faced the same issue in HDINSIGHT. We solved it by upgrading the metastore.
The Default metastore had only 5 DTU which is not recommended for production environments. So we migrated to custom Metastore and spin the Azure SQL SERVER (P2 above 250 DTUs) and the setting the below properties:
hive.direct.sql.max.elements.values.clause=200
hive.direct.sql.max.elements.in.clause=200
Above values are set because SQL SERVER cannot process more than 2100 parameter. When you have partitions more than 348, you faced this issue as 1 partition creates 8 parameters for metastore 8 x 348

Is it possible to reduce the number of MetaStore checks when querying a Hive table with lots of columns?

I am using spark sql on databricks, which uses a Hive metastore, and I am trying to set up a job/query that uses quite a few columns (20+).
The amount of time it takes to run the metastore validation checks is scaling linearly with the number of columns included in my query - is there any way to skip this step? Or pre-compute the checks? Or to at least make the metastore only check once per table rather than once per column?
A small example is that when I run the below, even before calling display or collect, the metastore checker happens once:
new_table = table.withColumn("new_col1", F.col("col1")
and when I run the below, the metastore checker happens multiple times, and therefore takes longer:
new_table = (table
.withColumn("new_col1", F.col("col1")
.withColumn("new_col2", F.col("col2")
.withColumn("new_col3", F.col("col3")
.withColumn("new_col4", F.col("col4")
.withColumn("new_col5", F.col("col5")
)
The metastore checks it's doing look like this in the driver node:
20/01/09 11:29:24 INFO HiveMetaStore: 6: get_database: xxx
20/01/09 11:29:24 INFO audit: ugi=root ip=unknown-ip-addr cmd=get_database: xxx
The view to the user on databricks is:
Performing Hive catalog operation: databaseExists
Performing Hive catalog operation: tableExists
Performing Hive catalog operation: getRawTable
Running command...
I would be interested to know if anyone can confirm that this is just the way it works (a metastore check per column), and if I have to just plan for the overhead of the metastore checks.
I am surprised by this behavior as it does not fit with the Spark processing model and I cannot replicate it in Scala. It is possible that it is somehow specific to PySpark but I doubt that since PySpark is just an API for creating Spark plans.
What is happening, however, is that after every withColumn(...) the plan is analyzed. If the plan is large, this can take a while. There is a simple optimization, however. Replace multiple withColumn(...) calls for independent columns with df.select(F.col("*"), F.col("col2").as("new_col2"), ...). In this case, only a single analysis will be performed.
In some cases of extremely large plans, we've saved 10+ minutes of analysis for a single notebook cell.

Cdh to hdp hive

I have written hive udf in cloudera and we’re migrating it to hortonworks. When I try to apply the same udf in hortonworks cluster it throws me an error below.
Use the right dependencies with the correct versions. Sit with admin team regarding the versions and try to run it. Limit always scan few records and apply the operation on that data instead of whole dataset so, it worked for me when I apply the udf with limit. Even any version you use/even cdh version will work if you use limit. But the problem comes when you apply it on whole data set. As my sample data is around 5 million records, it has to run map reduce job.

Mapreduce job not launching when running hive query with where clause

I am using apache-hive-1.2.2 on Hadoop 2.6.0. When am running a hive query with where clause it is giving results immediately without launching any MapReduce job. I'm not sure what is happening. Table has over 100k records.
I am quoting this from Hive Documentation
hive.fetch.task.conversion
Some select queries can be converted to a single FETCH task,
minimizing latency. Currently the query should be single sourced not
having any subquery and should not have any aggregations or distincts
(which incur RS – ReduceSinkOperator, requiring a MapReduce task),
lateral views and joins.
Any type of the sort of aggregation like max or min or count is going to require a MapReduce job. So it depends on your data-set you have.
select * from tablename;
It just reads raw data from files in HDFS, so it is much faster without MapReduce and it doesn't need MR.
This is due to the the property "hive.fetch.task.conversion". The default value is set to "more" (Hive 2.1.0) and results in Hive trying to go straight at the data by launching a single Fetch task instead of a Map Reduce job wherever possible.
This behaviour however might not be desirable in case you have a huge table (say 500 GB+) as it would cause a single thread to be launched instead of multiple threads as happens in the case of a Map Reduce job.
You can set this property to "minimal" or "none" in hive-site.xml to bypass the behaviour.

Hive analyze compute stats query failing

I'm running Hive 1.0, trying to compute column statistics using the built-in analyze command. HQL script looks like:
set hive.cbo.enable=true;
set hive.compute.query.using.stats=true;
set hive.stats.fetch.column.stats=true;
use db;
analyze table tbl compute statistics for columns;
Which kicks off a map-only MR task as expected. The job runs to 100% for both map and reduce, then reports:
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.ColumnStatsTask
But the job is registered as a SUCCESS.
Googling led me to this JIRA ticket, but the resolution says the problem is resolved in Hive 0.14. Is there something simple I'm missing in the query?
EDIT: Five and a half years later, I've changed jobs and industries twice, picked up Spark and then abandoned Hadoop altogether in all my workflows, and the world aligned around efficient cloud data lakes that don't require a new query language. Hive is a distant memory for me, but I hope the other answer seekers found sufficient workarounds. I don't think I ever did.