It throws an exception when I tried to initialize parameters with tf.train.Supervisor where the net is constructed with tensorlayer. The code is like this:
init_op = tf.global_variables_initializer()
saver = tf.train.Saver()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sv = tf.train.Supervisor(logdir=FLAGS.summary_dir, save_summaries_secs=0, saver=None)
with sv.managed_session(config=config) as sess:
init_ = sess.run(init_op)
net.print_params()
net.print_layers()
tl.layers.print_all_variables()
and the exception is:
Cannot evaluate tensor using `eval()`: No default session is registered. Use `with sess.as_default()` or pass an explicit session to `eval(session=sess)`
Traceback (most recent call last):
File "/home/recsys/anaconda3/envs/tf1.2/lib/python3.6/site-packages/tensorlayer/layers.py", line 309, in print_params
val = p.eval()
File "/home/recsys/anaconda3/envs/tf1.2/lib/python3.6/site-packages/tensorflow/python/ops/variables.py", line 463, in eval
return self._variable.eval(session=session)
File "/home/recsys/anaconda3/envs/tf1.2/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 606, in eval
return _eval_using_default_session(self, feed_dict, self.graph, session)
File "/home/recsys/anaconda3/envs/tf1.2/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3914, in _eval_using_default_session
raise ValueError("Cannot evaluate tensor using `eval()`: No default "
ValueError: Cannot evaluate tensor using `eval()`: No default session is registered. Use `with sess.as_default()` or pass an explicit session to `eval(session=sess)`
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "MainEntryPtb.py", line 65, in <module>
train_rnn(FLAGS)
File "/home/recsys/wangjian/learntf/TFTemplate/examples/ptb.py", line 122, in train_rnn
net.print_params()
File "/home/recsys/anaconda3/envs/tf1.2/lib/python3.6/site-packages/tensorlayer/layers.py", line 313, in print_params
raise Exception("Hint: print params details after tl.layers.initialize_global_variables(sess) or use network.print_params(False).")
Exception: Hint: print params details after tl.layers.initialize_global_variables(sess) or use network.print_params(False).
It seems that when I run initialize op init_ = sess.run(init_op) it does not really work as if parameters are initialized succeed net.print_params() would not throw an exception. I also tried sv = tf.train.Supervisor(logdir=FLAGS.summary_dir, save_summaries_secs=0, saver=None, init_op=tf.global_variables_initializer()) to initialize parameters, but it also failed.
I use tensorflow v1.2.1 and python3.6
This GitHub issue has clearly explained this problem.
This is not a bug, neither nor "Supervisor does not initialize parameters succeed".
You should just change your sess into interactivesession or use with sess.as_default, then this problem will be solved.
If you want to know why this problem occurs,you should refer to the tensorlayer source code, in the definition of print_params has the :
val = p.eval(session=session)
clearly eval only used for interactivesession or with sess.as_default
Related
I have saved the trained model and the weights as below.
model, history, score = fit_model(model, train_batches, val_batches, callbacks=[callback])
model.save('./model')
model.save_weights('./weights')
Then I tried to get the saved model as the following way
if __name__ == '__main__':
model = keras.models.load_model('./model', compile= False,custom_objects={"F1Score": tfa.metrics.F1Score})
test_batches, nb_samples = test_gen(dataset_test_path, 32, img_width, img_height)
predict, loss, acc = predict_model(model,test_batches, nb_samples)
print(predict)
print(acc)
print(loss)
But it gives me an error. What should I do to overcome this?
Traceback (most recent call last):
File "test_pro.py", line 34, in <module>
model = keras.models.load_model('./model',compile= False,custom_objects={"F1Score": tfa.metrics.F1Score})
File "/home/dcs2016csc007/.local/lib/python3.8/site-packages/tensorflow/python/keras/saving/save.py", line 212, in load_model
return saved_model_load.load(filepath, compile, options)
File "/home/dcs2016csc007/.local/lib/python3.8/site-packages/tensorflow/python/keras/saving/saved_model/load.py", line 138, in load
keras_loader.load_layers()
File "/home/dcs2016csc007/.local/lib/python3.8/site-packages/tensorflow/python/keras/saving/saved_model/load.py", line 379, in load_layers
self.loaded_nodes[node_metadata.node_id] = self._load_layer(
File "/home/dcs2016csc007/.local/lib/python3.8/site-packages/tensorflow/python/keras/saving/saved_model/load.py", line 407, in _load_layer
obj, setter = revive_custom_object(identifier, metadata)
File "/home/dcs2016csc007/.local/lib/python3.8/site-packages/tensorflow/python/keras/saving/saved_model/load.py", line 921, in revive_custom_object
raise ValueError('Unable to restore custom object of type {} currently. '
ValueError: Unable to restore custom object of type _tf_keras_metric currently. Please make sure that the layer implements `get_config`and `from_config` when saving. In addition, please use the `custom_objects` arg when calling `load_model()`.
Looking at the source code for Keras, the error is raised when trying to load a model with a custom object:
def revive_custom_object(identifier, metadata):
"""Revives object from SavedModel."""
if ops.executing_eagerly_outside_functions():
model_class = training_lib.Model
else:
model_class = training_lib_v1.Model
revived_classes = {
constants.INPUT_LAYER_IDENTIFIER: (
RevivedInputLayer, input_layer.InputLayer),
constants.LAYER_IDENTIFIER: (RevivedLayer, base_layer.Layer),
constants.MODEL_IDENTIFIER: (RevivedNetwork, model_class),
constants.NETWORK_IDENTIFIER: (RevivedNetwork, functional_lib.Functional),
constants.SEQUENTIAL_IDENTIFIER: (RevivedNetwork, models_lib.Sequential),
}
parent_classes = revived_classes.get(identifier, None)
if parent_classes is not None:
parent_classes = revived_classes[identifier]
revived_cls = type(
compat.as_str(metadata['class_name']), parent_classes, {})
return revived_cls._init_from_metadata(metadata) # pylint: disable=protected-access
else:
raise ValueError('Unable to restore custom object of type {} currently. '
'Please make sure that the layer implements `get_config`'
'and `from_config` when saving. In addition, please use '
'the `custom_objects` arg when calling `load_model()`.'
.format(identifier))
The method will only work fine with the custom objects of the types defined in revived_classes. As you can see, it currently only works with input layer, layer, model, network, and sequential custom objects.
In your code, you pass an tfa.metrics.F1Score class in the custom_objects argument, which is of type METRIC_IDENTIFIER, therefore, not supported (probably because it doesn't implement the get_config and from_config functions as the error output says):
keras.models.load_model('./model', compile=False, custom_objects={"F1Score": tfa.metrics.F1Score})
It's been a while since I last worked with Keras but maybe you can try and follow what was proposed in this other related answer and wrap the call to tfa.metrics.F1Score in a method. Something like this (adjust it to your needs):
def f1(y_true, y_pred):
metric = tfa.metrics.F1Score(num_classes=3, threshold=0.5)
metric.update_state(y_true, y_pred)
return metric.result()
keras.models.load_model('./model', compile=False, custom_objects={'f1': f1})
So I just followed someone project and make it to here when I got this error:
[2020-10-12 15:33:21,128] ERROR in app: Exception on /predict/ [POST]
Traceback (most recent call last):
File "c:\users\mr777\anaconda3\envs\gpu\lib\site-packages\flask\app.py", line 2447, in wsgi_app
response = self.full_dispatch_request()
File "c:\users\mr777\anaconda3\envs\gpu\lib\site-packages\flask\app.py", line 1952, in full_dispatch_request
rv = self.handle_user_exception(e)
File "c:\users\mr777\anaconda3\envs\gpu\lib\site-packages\flask\app.py", line 1821, in handle_user_exception
reraise(exc_type, exc_value, tb)
File "c:\users\mr777\anaconda3\envs\gpu\lib\site-packages\flask\_compat.py", line 39, in reraise
raise value
File "c:\users\mr777\anaconda3\envs\gpu\lib\site-packages\flask\app.py", line 1950, in full_dispatch_request
rv = self.dispatch_request()
File "c:\users\mr777\anaconda3\envs\gpu\lib\site-packages\flask\app.py", line 1936, in dispatch_request
return self.view_functions[rule.endpoint](**req.view_args)
File "D:\Ngoding Python\Skripsi\deploy\app.py", line 70, in predict
out = model.predict(img)
File "c:\users\mr777\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\engine\training.py", line 130, in _method_wrapper
return method(self, *args, **kwargs)
File "c:\users\mr777\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\engine\training.py", line 1562, in predict
version_utils.disallow_legacy_graph('Model', 'predict')
File "c:\users\mr777\anaconda3\envs\gpu\lib\site-packages\tensorflow\python\keras\utils\version_utils.py", line 122, in disallow_legacy_graph
raise ValueError(error_msg)
ValueError: Calling `Model.predict` in graph mode is not supported when the `Model` instance was constructed with eager mode enabled. Please construct your `Model` instance in graph mode or call `Model.predict` with eager mode enabled.
Here's the code I wrote:
with graph.as_default():
# perform the prediction
out = model.predict(img)
print(out)
print(class_names[np.argmax(out)])
# convert the response to a string
response = class_names[np.argmax(out)]
return str(response)
any idea with this? because I found the same question here
The answer is simple, just load your model inside the graph just like this:
with graph.as_default():
json_file = open('models/model.json','r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
#load weights into new model
loaded_model.load_weights("models/model.h5")
print("Loaded Model from disk")
#compile and evaluate loaded model
loaded_model.compile(loss='sparse_categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
# perform the prediction
out = loaded_model.predict(img)
print(out)
print(class_names[np.argmax(out)])
# convert the response to a string
response = class_names[np.argmax(out)]
return str(response)
#Ilham: Try to wrap the call method in a tf.function, right after defining your network. Something like this:
model = Sequential()
model.call = tf.function(model.call)
I had an issue similar to yours. I solved it just by adding that second line of code.
See the following link for more details: https://www.tensorflow.org/guide/intro_to_graphs
I am trying to run my code and the code is throwing the error.
Error is mentioned below:
AttributeError: module 'tensorflow.contrib.seq2seq' has no attribute 'prepare_attention'
I updated my tensorflow version to 1.0.0. But the up-gradation did not solved my problem. I also searched in google regarding this error, but i did not got correct solution.
Here is the code part, please have a look.
Getting the training and test predictions
training_predictions, test_predictions = seq2seq_model(tf.reverse(inputs, [-1]),
targets,
keep_prob,
batch_size,
sequence_length,
len(answerswords2int),
len(questionswords2int),
encoding_embedding_size,
decoding_embedding_size,
rnn_size,
num_layers,
questionswords2int)
C:\Users\Maniech\Anaconda3\lib\site-packages\tensorflow_core\python\client\session.py:1750: UserWarning: An interactive session is already active. This can cause out-of-memory errors in some cases. You must explicitly call `InteractiveSession.close()` to release resources held by the other session(s).
warnings.warn('An interactive session is already active. This can '
Traceback (most recent call last):
File "<ipython-input-8-aecd893a8ef5>", line 37, in <module>
questionswords2int)
File "C:/Users/Maniech/Desktop/Deep NLP AZ/chatbot.py", line 292, in seq2seq_model
batch_size)
File "C:/Users/Maniech/Desktop/Deep NLP AZ/chatbot.py", line 258, in decoder_rnn
batch_size)
File "C:/Users/Maniech/Desktop/Deep NLP AZ/chatbot.py", line 201, in decode_training_set
attention_keys, attention_values, attention_score_function, attention_construct_function = tf.contrib.seq2seq.prepare_attention(attention_states, attention_option = "bahdanau", num_units = decoder_cell.output_size)
AttributeError: module 'tensorflow.contrib.seq2seq' has no attribute 'prepare_attention'
Any help is appreciated.
I have trained many sub-models, each sub-models is a part of the last model. And then I want to use those pretrained sub models to initial the last model's parameters. I try to use SessionRunHook to load other ckpt file's model parameters to initial the last model's.
I tried the follow code but failed. Hope some advices. Thanks!
The error info is:
Traceback (most recent call last):
File "train_high_api_local.py", line 282, in <module>
tf.app.run()
File "/Users/zhouliaoming/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/platform/app.py", line 124, in run
_sys.exit(main(argv))
File "train_high_api_local.py", line 266, in main
clf_.train(input_fn=lambda: read_file([tables[0]], epochs_per_eval), steps=None, hooks=[hook_test]) # input yield: x, y
File "/Users/zhouliaoming/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/estimator/estimator.py", line 314, in train
.......
File "/Users/zhouliaoming/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/training/monitored_session.py", line 674, in create_session
hook.after_create_session(self.tf_sess, self.coord)
File "train_high_api_local.py", line 102, in after_create_session
saver = tf.train.Saver([ti]) # TODO: ERROR INFO: Graph is finalized and cannot be modified.
.......
File "/Users/zhouliaoming/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3135, in create_op
self._check_not_finalized()
File "/Users/zhouliaoming/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 2788, in _check_not_finalized
raise RuntimeError("Graph is finalized and cannot be modified.")
RuntimeError: Graph is finalized and cannot be modified.
and the code detail is:
class SetTensor(session_run_hook.SessionRunHook):
""" like tf.train.LoggingTensorHook """
def after_create_session(self, session, coord):
""" Called when new TensorFlow session is created: graph is finalized and ops can no longer be added. """
graph = tf.get_default_graph()
ti = graph.get_tensor_by_name("h_1_15/bias:0")
with session.as_default():
with tf.name_scope("rewrite"):
saver = tf.train.Saver([ti]) # TODO: ERROR INFO: Graph is finalized and cannot be modified.
saver.restore(session, "/Users/zhouliaoming/data/credit_dnn/model_retrain/rm_gene_v2_sall/model.ckpt-2102")
pass
def main(unused_argv):
""" train """
norm_all_func = lambda x: tf.cond(x>1, lambda: tf.log(x), lambda: tf.identity(x))
feature_columns=[[tf.feature_column.numeric_column(COLUMNS[i], shape=fi, normalizer_fn=lambda x: tf.py_func(weight_norm2, [x], tf.float32) )] for i, fi in enumerate(FEA_DIM)] # normlized: running OK!
## use self-defined model
param = {"learning_rate": 0.0001, "feature_columns": feature_columns, "isanalysis": FLAGS.isanalysis, "isall": False}
clf_ = tf.estimator.Estimator(model_fn=model_fn_wide2deep, params=param, model_dir=ckpt_dir)
hook_test = SetTensor(["h_1_15/bias", "h_1_15/kernel"])
epochs_per_eval = 1
for n in range(int(FLAGS.num_epochs/epochs_per_eval)):
# train num_epochs
clf_.train(input_fn=lambda: read_file([tables[0]], epochs_per_eval), steps=None, hooks=[hook_test]) # input yield: x, y
SessionRunHook is not meant for this use case. As the error says, you cannot change the graph once sess.run() has been invoked.
You can assign variables using saver.restore() in your "normal code". You don't have to be inside any hooks.
Also, if you want to restore many variables and can match them to their names and shapes in a checkpoint, you might want to take a look at https://gist.github.com/iganichev/d2d8a0b1abc6b15d4a07de83171163d4. It shows some example code to restore a subset of variables.
You can do this:
class SaveAtEnd(tf.train.SessionRunHook):
def begin(self):
self._saver = # create your saver
def end(self, session):
self._saver.save(session, ...)
Running below code tf.contrib.slim.get_variables_to_restore() return empty value [] for all_vars, and then causing failure when calling tf.train.Saver. Detail error message shows below.
Am I missing anything?
>>> import tensorflow as tf
>>> inception_exclude_scopes = ['InceptionV3/AuxLogits', 'InceptionV3/Logits', 'global_step', 'final_ops']
>>> inception_checkpoint_file = '/Users/morgan.du/git/machine-learning/projects/capstone/yelp/model/inception_v3_2016_08_28.ckpt'
>>> with tf.Session(graph=tf.Graph()) as sess:
... init_op = tf.global_variables_initializer()
... sess.run(init_op)
... reader = tf.train.NewCheckpointReader(inception_checkpoint_file)
... var_to_shape_map = reader.get_variable_to_shape_map()
... all_vars = tf.contrib.slim.get_variables_to_restore(exclude=inception_exclude_scopes)
... inception_saver = tf.train.Saver(all_vars)
... inception_saver.restore(sess, inception_checkpoint_file)
...
Traceback (most recent call last):
File "<stdin>", line 7, in <module>
File "/Users/morgan.du/miniconda2/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 1051, in __init__
self.build()
File "/Users/morgan.du/miniconda2/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 1072, in build
raise ValueError("No variables to save")
ValueError: No variables to save
The problem here seems to be that your graph is empty—i.e. it does not contain any variables. You create a new graph on the line with tf.Session(graph=tf.Graph()):, and none of the following lines creates a tf.Variable object.
To restore a pre-trained TensorFlow model, you need to do one of three things:
Rebuild the model graph, by executing the same Python graph building code that was used to train the model in the first place.
Load a "MetaGraph" that contains information about how to reconstruct the graph structure and model variables. See this tutorial for more details on how to create and use a MetaGraph. MetaGraphs are often created alongside checkpoint files, and typically have the extension .meta.
Load a "SavedModel", which contains a "MetaGraph". See the documentation here for more details.