I'm building image processing network in tensorflow and I want to make use of texture loss. Texture loss seems simple to implement if you have pretrained model loaded.
I'm using TF to build the computational graph for my model and I want to incorporate Keras.application.VGG19 model to get output from layer 'block4_conv4'.
The problem is: I have two TF tensors target and result from my main model, how to feed them into keras VGG19 in the same session to compute their diff and use it in main loss for my model?
It seems following code does the trick
with tf.variable_scope("") as scope:
phi_func = VGG19(include_top=False, weights=None, input_shape=(128, 128, 3))
text_1 = phi_func(predicted)
scope.reuse_variables()
text_2 = phi_func(x)
text_loss = tf.reduce_mean((text_1 - text_2)**2)
right after session created I call phi_func.load_weights(path) to initiate weights
Related
I am trying to download the VGG19 model via TensorFlow
base_model = VGG19(input_shape = [256,256,3],
include_top = False,
weights = 'imagenet')
However the download always gets stuck before it finishes downloading. I've tried with different models too like InceptionV3 and the same happens there.
Fortunately, the prompt makes the link available where the model can be downloaded manually
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgg19/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5
19546112/80134624 [======>.......................] - ETA: 11s
After downloading the model from the given link I try to import the model using
base_model = load_model('vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5')
but I get this error
ValueError: No model found in config file.
How do I load in the downloaded .h5 model manually?
You're using load_model on weights, instead of a model. You need to have a defined model first, then load the weights.
weights = "path/to/weights"
model = VGG19 # the defined model
model.load_weights(weights) # the weights
Got the same problem when learning on tensorflow tutorial, too.
Transfer learning and fine-tuning: Create the base model from the pre-trained convnets
# Create the base model from the pre-trained model MobileNet V2
IMG_SIZE = (160, 160)
IMG_SHAPE = IMG_SIZE + (3,)
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE, include_top=False, weights=None)
# load model weights manually
weights = 'mobilenet_v2_weights_tf_dim_ordering_tf_kernels_1.0_160_no_top.h5'
base_model.load_weights(weights)
I tried download the model.h5, and load manually. It works.
`
It seems setting model.trainable=False in tensorflow keras does nothing except for to print a wrong model.summary(). Here is the code to reproduce the issue:
import tensorflow as tf
import numpy as np
IMG_SHAPE = (160, 160, 3)
# Create the base model from the pre-trained model MobileNet V2
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,
include_top=False,
weights='imagenet')
base_model.trainable = False
# for layer in base_model.layers:
# layer.trainable=False
bc=[] #before compile
ac=[] #after compile
for layer in base_model.layers:
bc.append(layer.trainable)
print(np.all(bc)) #True
print(base_model.summary()) ##this changes to show no trainable parameters but that is wrong given the output to previous np.all(bc)
base_model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
for layer in base_model.layers:
ac.append(layer.trainable)
print(np.all(ac)) #True
print(base_model.summary()) #this changes to show no trainable parameters but that is wrong given the output to previous np.all(ac)
In light of this - What is the expected behavior and purpose of model.trainable=False in tensorflow keras?
https://github.com/tensorflow/tensorflow/issues/29535
I think this issue could help.
If you are looking for a way to not update some weights in your model I would suggest using the parameter var_list in the minimize function from your Optimizer.
For some reason when creating a model from keras Tensorflow switch all tf.Variables to True, and since all are Tensors we are not able to update the value to False.
What I do in my code is create scope names for all pretrained models and loop over it adding all layers that are not from my pretrained model.
trainable_variables = []
variables_collection = tf.get_collection('learnable_variables')
for layer in tf.trainable_variables():
if 'vgg_model' not in layer.name:
trainable_variables.append(layer)
tf.add_to_collection('learnable_variables', layer)
grad = tf.train.GradientDescentOptimizer(lr)
train_step = grad.minimize(tf.reduce_sum([loss]), var_list=trainable_variables)
Watch out for global_initializer as well, since it will overwrite your pretrained Weights as well. You can solve that by using tf.variables_initializer and passing a list of variables you want to add weights.
sess.run(tf.variables_initializer(variables_collection))
Source I used when trying to solve this problem
Is it possible to make a trainable variable not trainable?
TensorFlow: Using tf.global_variables_initializer() after partially loading pre-trained weights
I have keras pretrained model(model.h5). And I want to prune that model with tensorflow Magnitude-based weight pruning with Keras. One curious things is that my pretrained model is built with original keras model > I mean that is not from tensorflow.keras. Inside tensorflow Magnitude-based weight pruning with Keras example, they show how to do with tensorflow.keras model. I want to ask is that can I use their tool to prune my original keras pretrained model?
inside their weight pruning toolkit ,there is two way. one is pruned the model layer by layer while training and second is pruned the whole model. I tried the second way to prune the whole pretrained model. below is my code.
inside their weight pruning toolkit ,there is two way. one is pruned the model layer by layer while training and second is pruned the whole model. I tried the second way to prune the whole pretrained model. below is my code.
For my original pretrained model, I load the weight from model.h5 and can call model.summary() after I apply prune_low_magnitude() none of the method from model cannot call including model.summary() method. And show the error like AttributeError: 'NoneType' object has no attribute 'summary'
model = get_training_model(weight_decay)
model.load_weights('model/keras/model.h5')
model.summary()
epochs = 1
end_step = np.ceil(1.0 * 100 / 2).astype(np.int32) * epochs
print(end_step)
new_pruning_params = {
'pruning_schedule': tfm.sparsity.keras.PolynomialDecay(initial_sparsity=0.1,
final_sparsity=0.90,
begin_step=40,
end_step=end_step,
frequency=30)
}
new_pruned_model = tfm.sparsity.keras.prune_low_magnitude(model, **new_pruning_params)
print(new_pruned_model.summary())
Inside their weight pruning toolkit
enter link description here ,there is two way. one is pruned the model layer by layer while training and second is pruned the whole model. I tried the second way to prune the whole pretrained model. below is my code.
For my original pretrained model, I load the weight from model.h5 and can call model.summary() after I apply prune_low_magnitude() none of the method from model cannot call including model.summary() method. And show the error like
AttributeError: 'NoneType' object has no attribute 'summary'
I hope this answer still helps, but I recently had the same issue that prune_low_magnitude() returns an object of type 'None'. Also new_pruned_model.compile() would not work.
The model I had been using was a pretrained model that could be imported from tensorflow.python.keras.applications.
For me this worked:
(0) Import the libraries:
from tensorflow_model_optimization.python.core.api.sparsity import keras as sparsity
from tensorflow.python.keras.applications.<network_type> import <network_type>
(1) Define the pretrained model architecture
# define model architecture
loaded_model = <model_type>()
loaded_model.summary()
(2) Compile the model architecture and load the pretrained weights
# compile model
opt = SGD(lr=learn_rate, momentum=momentum)
loaded_model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
loaded_model.load_weights('weight_file.h5')
(3) set pruning parameters and assign pruning schedule
# set pruning parameters
pruning_params = {
'pruning_schedule': sparsity.PolynomialDecay(...)
}
# assign pruning schedule
model_pruned = sparsity.prune_low_magnitude(loaded_model, **pruning_params)
(4) compile model and show summary
# compile model
model_pruned.compile(
loss=tf.keras.losses.categorical_crossentropy,
optimizer='SGD',
metrics=['accuracy'])
model_pruned.summary()
It was important to import the libraries specifically from tensorflow.python.keras and use this keras model from the TensorFlow library.
Also, it was important to use the TensorFlow Beta Release (pip install tensorflow==2.0.0b1), otherwise still an object with type 'None' would be returned by prune_low_magnitude.
I am using PyCharm 2019.1.3 (x64) as IDE. Here is the link that led me to this solution: https://github.com/tensorflow/model-optimization/issues/12#issuecomment-526338458
I am using keras to build a multi-output classification model. My dataset is such as
[x1,x2,x3,x4,y1,y2,y3]
x1,x2,x3 are the features, and y1,y2,y3 are the labels, the y1,y2,y3 are multi-classes.
And I already built a model (I ingore some hidden layers):
def baseline_model(input_dim=23,output_dim=3):
model_in = Input(shape=(input_dim,))
model = Dense(input_dim*5,kernel_initializer='uniform',input_dim=input_dim)(model_in)
model = Activation(activation='relu')(model)
model = Dropout(0.5)(model)
...................
model = Dense(output_dim,kernel_initializer='uniform')(model)
model = Activation(activation='sigmoid')(model)
model = Model(model_in,model)
model.compile(optimizer='adam',loss='binary_crossentropy', metrics=['accuracy'])
return model
And then I try to use the method of keras to make it support classification:
estimator = KerasClassifier(build_fn=baseline_model)
estimator.fit()
estimator.predict(df[0:10])
But I found that the result is not multi-output, only one dimension is output.
[0,0,0,0,0,0,0,0,0,0]
So for the multi-output classification problem, we can not use KerasClassifier function to learn it?
You do not need to wrap the model in KerasClassifier. That wrapper is so that you can use the Keras model with Scikit-Learn. The type of model (classifier, regression, multiclass classifier, etc) is ultimately determined by the shape and activation of the final layer of your model.
You can simply use model.fit() function that is part of Keras. Make sure that you pass the data into the function. You can see more info on the fit function here: https://keras.io/models/model/#fit
Also your loss is setup as binary_crossentropy. For a multi-class problem you will want to use categorical_crossentropy.
model.compile(optimizer='adam',loss='categorical_crossentropy', metrics=['accuracy'])
This model isn't really what Keras refers to as multi-output as far as I can tell. With multi-output you are trying to get the output from several different layers and possibly apply different loss functions to them.
Base on the setup in your question you would be able to use the Keras Sequential model instead of the Functional model if you wanted. Keras recommends using the Sequential model if you can because its simpler. https://keras.io/getting-started/sequential-model-guide/
I have trained a model for classification using TensorFlow slim model vgg, using CASIA(a face recognition dataset) as training dataset.
I want to test the model by using LFW dataset, it is a face matching task. so I need to extract the net features like fc7/fc8, not the softmax layer, and compare the distance between the features, to determine whether they are the same person.
How can I extract the features of a slim model?
Here is part of the training code.
import tensorflow as tf
from tensorflow.contrib.slim.python.slim.nets import vgg
slim = tf.contrib.slim
FLAGS = tf.app.flags.FLAGS
def tower_loss(scope):
images, labels = read_and_decode()
with slim.arg_scope(vgg.vgg_arg_scope()):
logits, end_points = vgg.vgg_16(images, num_classes=FLAGS.num_classes)
_ = cal_loss(logits, labels)
losses = tf.get_collection('losses', scope)
total_loss = tf.add_n(losses, name='total_loss')
return total_loss
You can try using tf.get_default_graph().get_tensor_by_name("VGG16/fc16:0") or whatever tensor name of the specific feature you want to extract.
To verify the name of the tensors you are extracting, you can try
for operation in graph.get_operations():
print operation.values()
Remember to put :0 at the end of the names as they indicate the item you're retrieving is a tensor.
Get end_points of slim model and extract the feature.