Given a tensor of shape=[batch_size, max_time, 128] (the output of an RNN), for which max_time may vary, I would like to apply a fully connected layer to project the data onto a [batch_size, max_time, 10] shape.
The question is: do I need to reshape the input Tensor first, merging the first two dimensions, then apply tf.layers.dense, then reshape back to 3D? Or can I simply use tf.layers.dense on the 3D tensor to obtain an equivalent effect ?
I would like to have a single weight matrix shared for all the connections between the 128 RNN units and the 10 output classes, allowing at the same a variable length max_time for each batch.
After further investigation, is appears that the two options are equivalent.
The Dense.call() method checks the number of dimensions. If this is larger than 2, then it computes a tensordot (an operation which corresponds to numpy.tensordot) between the input and the weights, choosing as axes the last dimension in the input and the first dimension in the weights. Otherwise it applies standard matrix multiplication (matmul).
Source
Related
I'm trying to migrate TensorFlow checkpoint weights to PyTorch.
When I extract some weights with cp.load_variable(<CKPT>, <FIELD_NAME>), I get a 4D list ordered as HWCN, for example [1, 1, 512, 1024] which is clearly HWCN.
However, all convolution blocks data_format are set to NHWC.
So, the question is, why there's mismatch?
what should I believe? does the 4D list from cp.load_variable is correct and all left to do is permute the dimensions?
Thanks!
The weights are not given as HWCN, as the weights do not have any batch dimension (N), otherwise that would apply a different weight for each sample in the batch. The shape is [kernel_height, kernel_width, in_channels, out_channels]. There is no mismatch, because data_format specifies which format the input and output use.
In PyTorch the weight of convolutions is given as [out_channels, in_channels, kernel_height, kernel_width], therefore you only need to permute the dimensions.
I have a 4D tensor of filter/kernel weights (of convolutional layer).
They're being passed to the subsequent operation with shape [5,5,3,32], 32 RGB 5x5 filters.
to collect their values for monitoring/analysis/storage using tf.summary.image I need to reshape this tensor into the shape [32,5,5,3], to then view/store each of the 32 filters as individual images of [5,5,3]
is this possible purely using tf.reshape()? or do I need to do multiple tensor transformations?
You need transpose instead of reshape, tf.transpose(t, (3,0,1,2)) should do what you need (suppose t is your tensor here), which shifts the last axis as the first axis.
I am aware that there is a similar topic at LSTM Followed by Mean Pooling, but that is about Keras and I work in pure TensorFlow.
I have an LSTM network where the recurrence is handled by:
outputs, final_state = tf.nn.dynamic_rnn(cell,
embed,
sequence_length=seq_lengths,
initial_state=initial_state)
where I pass the correct sequence lengths for each sample (padding by zeros). In any case, outputs contains irrelevant outputs since some samples produce longer outputs than others, based on sequence lengths.
Right now I'm extracting the last relevant output by means of the following method:
def extract_axis_1(data, ind):
"""
Get specified elements along the first axis of tensor.
:param data: Tensorflow tensor that will be subsetted.
:param ind: Indices to take (one for each element along axis 0 of data).
:return: Subsetted tensor.
"""
batch_range = tf.range(tf.shape(data)[0])
indices = tf.stack([batch_range, ind], axis=1)
res = tf.reduce_mean(tf.gather_nd(data, indices), axis=0)
where I pass sequence_length - 1 as indices. In reference to the last topic, I would like to select all relevant outputs followed by average pooling, instead of just the last one.
Now, I tried passing nested lists as indeces to extract_axis_1 but tf.stack does not accept this.
Any solution directions for this?
You can exploit the weight parameter of the tf.contrib.seq2seq.sequence_loss function.
From the documentation:
weights: A Tensor of shape [batch_size, sequence_length] and dtype float. weights constitutes the weighting of each prediction in the sequence. When using weights as masking, set all valid timesteps to 1 and all padded timesteps to 0, e.g. a mask returned by tf.sequence_mask.
You need to compute a binary mask that distinguish between your valid outputs and invalid ones. Then you can just provide this mask to the weights parameter of the loss function (probably, you will want to use a loss like this one); the function will not consider the outputs with a 0 weight in the computation of the loss.
If you can't/don't need to use a sequence loss you can do exactly the same thing manually. You compute a binarymask and then multiply your outputs by this mask and provide these as inputs to your fully connected layer.
I am a newbie to Keras (and somehow to TF) but I have found shape definition for the input layer very confusing.
So in the examples, when we have a 1D vector of length 20 for input, shape gets defined as
...Input(shape=(20,)...)
And when a 2D tensor for greyscale images needs to be defined for MNIST, it is defined as:
...Input(shape=(28, 28, 1)...)
So my question is why the tensor is not defined as (20) and (28, 28)? Why in the first case a second dimension is added and left empty? Also in second, number of channels have to be defined?
I understand that it depends on the layer so Conv1D, Dense or Conv2D take different shapes but it seems the first parameter is implicit?
According to docs, Dense needs be (batch_size, ..., input_dim) but how is this related the example:
Dense(32, input_shape=(784,))
Thanks
Tuples vs numbers
input_shape must be a tuple, so only (20,) can satisfy it. The number 20 is not a tuple. -- There is the parameter input_dim, to make your life easier if you have only one dimension. This parameter can take 20. (But really, I find it just confusing, I always work with input_shape and use tuples, to keep a consistent understanding).
Dense(32, input_shape=(784,)) is the same as Dense(32, input_dim=784).
Images
Images don't have only pixels, they also have channels (red, green, blue).
A black/white image has only one channel.
So, (28pixels, 28pixels, 1channel)
But notice that there isn't any obligation to follow this shape for images everywhere. You can shape them the way you like. But some kinds of layers do demand a certain shape, otherwise they couldn't work.
Some layers demand specific shapes
It's the case of the 2D convolutional layers, which need (size1,size2,channels). They need this shape because they must apply the convolutional filters accordingly.
It's also the case of recurrent layers, which need (timeSteps,featuresPerStep) to perform their recurrent calculations.
MNIST models
Again, there isn't any obligation to shape your image in a specific way. You must do it according to which first layer you choose and what you intend to achieve. It's a free thing.
Many examples simply don't care about an image being a 2d structured thing, and they just use models that take 784 pixels. That's enough. They probably start with Dense layers, which demand shapes like (size,)
Other examples may care, and use a shape (28,28), but then these models will have to reshape the input to fit the needs of the next layer.
Convolutional layers 2D will demand (28,28,1).
The main idea is: input arrays must match input_shape or input_dim.
Tensor shapes
Be careful, though, when reading Keras error messages or working with custom / lambda layers.
All these shapes we defined before omit an important dimension: the batch size or the number of samples.
Internally all tensors will have this additional dimension as the first dimension. Keras will report it as None (a dimension that will adapt to any batch size you have).
So, input_shape=(784,) will be reported as (None,784).
And input_shape=(28,28,1) will be reported as (None,28,28,1)
And your actual input data must have a shape that matches that reported shape.
I'm following udacity MNIST tutorial and MNIST data is originally 28*28 matrix. However right before feeding that data, they flatten the data into 1d array with 784 columns (784 = 28 * 28).
For example,
original training set shape was (200000, 28, 28).
200000 rows (data). Each data is 28*28 matrix
They converted this into the training set whose shape is (200000, 784)
Can someone explain why they flatten the data out before feeding to tensorflow?
Because when you're adding a fully connected layer, you always want your data to be a (1 or) 2 dimensional matrix, where each row is the vector representing your data. That way, the fully connected layer is just a matrix multiplication between your input (of size (batch_size, n_features)) and the weights (of shape (n_features, n_outputs)) (plus the bias and the activation function), and you get an output of shape (batch_size, n_outputs). Plus, you really don't need the original shape information in a fully connected layer, so it's OK to lose it.
It would be more complicated and less efficient to get the same result without reshaping first, that's why we always do it before a fully connected layer. For a convolutional layer, on the opposite, you'll want to keep the data in original format (width, height).
That is a convention with fully connected layers. Fully connected layers connect every node in the previous layer with every node in the successive layer so locality is not an issue for this type of layer.
Additionally by defining the layer like this we can efficiently calculate the next step by calculating the formula: f(Wx + b) = y. This would not be as easily possible with multidimensional input and reshaping the input is low cost and easy to accomplish.