RandomForest decision confidence? - accord.net

I'm using accord.net's RandomForestLearning on some data, and have it predicting results correctly, but what I'd really like is a way to look at the decision confidence that goes along with the plain classification results?

In the end I manually compute the confidence by summing the votes for each label from the component DecsionTrees and the dividing the maximal vote by the total votes. Would be nice if there was an official way, though.

Related

Does increasing the number of iterations affect log-lik, AIC etc.?

Whenever I try to solve a convergence issue in one of my glmer models with the help of a different optimizer, I repeat the entire model optimization procedure with the new optimizer. That is, I re-run all the models I've computed so far with the new optimizer and again conduct comparisons with anova (). I do this because as far as I know different optimizers may lead to differences in AICs and log-lik ratios for one and the same model, making comparisons between two models that use different optimizers problematic.
In my most recent analysis, I've increased the number of iterations with optCtrl=list(maxfun=100000) to avoid convergence errors. I'm now wondering whether this can also lead to differences in AIC/log-lik etc. for one and the same model? Is it equally problematic to compare two models that differ with regard to the inclusion of the optCtrl=list(maxfun=100000) argument?
I actually thought that increasing the number of iterations would simply lead to longer computation times (rather than different results), but I was unable to verify this online. Any hint/explanation is appreciated.
As far as I know, you should be fine. As long as the models were fit with the same number of observations you should be able to compare them using the AIC. Hopefully someone else can comment on the nuances of the computations of the AIC itself, but I just fit a bunch of models with the same formula and dataset and different number of max iterations, getting the AIC each time. It didn't change as a function of the iterations. The iterations are just the time the model fitting process can take to maximize the likelihood, which for complex models can be tricky. Once a model is fit, and has converged on an answer, the number of iterations shouldn't change anything about the model itself.
If you look at this question, the top answer explains the AIC quite well:https://stats.stackexchange.com/questions/232465/how-to-compare-models-on-the-basis-of-aic

Algorithm - finding the order of HMM from observations

I am given a data that consists of N sequences of variable lengths of hidden variables and their corresponding observed variables (i.e., I have both the hidden variables and the observed variables for each sequence).
Is there a way to find the order K of the "best" HMM model for this data, without exhaustive search? (justified heuristics are also legitimate).
I think there may be a confusion about the word "order":
A first-order HMM is an HMM which transition matrix depends only on the previous state. A 2nd-order HMM is an HMM which transition matrix depends only on the 2 previous states, and so on. As the order increases, the theory gets "thicker" (i.e., the equations) and very few implementations of such complex models are implemented in mainstream libraries.
A search on your favorite browser with the keywords "second-order HMM" will bring you to meaningful readings about these models.
If by order you mean the number of states, and with the assumptions that you use single distributions assigned to each state (i.e., you do not use HMMs with mixtures of distributions) then, indeed the only hyperparameter you need to tune is the number of states.
You can estimate the optimal number of states using criteria such as the Bayesian Information Criterion, the Akaike Information Criterion, or the Minimum Message Length Criterion which are based on model's likelihood computations. Usually, the use of these criteria necessitates training multiple models in order to be able to compute some meaningful likelihood results to compare.
If you just want to get a blur idea of a good K value that may not be optimal, a k-means clustering combined with the percentage of variance explained can do the trick: if X clusters explain more than, let say, 90% of the variance of the observations in your training set then, going with an X-state HMM is a good start. The 3 first criteria are interesting because they include a penalty term that goes with the number of parameters of the model and can therefore prevent some overfitting.
These criteria can also be applied when one uses mixture-based HMMs, in which case there are more hyperparameters to tune (i.e., the number of states and the number of component of the mixture models).

What is the output of XGboost using 'rank:pairwise'?

I use the python implementation of XGBoost. One of the objectives is rank:pairwise and it minimizes the pairwise loss (Documentation). However, it does not say anything about the scope of the output. I see numbers between -10 and 10, but can it be in principle -inf to inf?
good question. you may have a look in kaggle competition:
Actually, in Learning to Rank field, we are trying to predict the relative score for each document to a specific query. That is, this is not a regression problem or classification problem. Hence, if a document, attached to a query, gets a negative predict score, it means and only means that it's relatively less relative to the query, when comparing to other document(s), with positive scores.
It gives predicted score for ranking.
However, the scores are valid for ranking only in their own groups.
So we must set the groups for input data.
For esay ranking, refer to my project xgboostExtension
If I understand your questions correctly, you mean the output of the predict function on a model fitted using rank:pairwise.
Predict gives the predicted variable (y_hat).
This is the same for reg:linear / binary:logistic etc. The only difference is that reg:linear builds trees to Min(RMSE(y, y_hat)), while rank:pairwise build trees to Max(Map(Rank(y), Rank(y_hat))). However, output is always y_hat.
Depending on the values of your dependent variables, output can be anything. But I typically expect output to be much smaller in variance vs the dependent variable. This is usually the case as it is not necessary to fit extreme data values, the tree just needs to produce predictors that are large/small enough to be ranked first/last in the group.

Update parameters of Bayesian Network with new data

I have a bayesian network, and I know the CPTs by learning the probabilities from existing data.
Suppose I receive a new data instance. Ideally I don't want to use all the data again to update the probabilities.
Is there a way to incrementally update the CPTs of the existing network each time new data comes in?
I think there should be, and I feel like I'm missing something :)
It's easiest to maintain the joint probability table, and rebuild the CPT from that as needed. Along with the JPT, keep a count of how many examples were used to produce it. When adding the nth example, multiply all probabilities by 1 - 1/n, and then add probability 1/n to the new example's associated probability.
If you're going to do this a bunch, you should maintain a count of examples for each row in the JPT instead of a probability. That'll cut down on numerical drift.

Identical Test set

I have some comments and i want to classify them as Positive or Negative.
So far i have an annotated dataset .
The thing is that the first 100 rows are classified as positive and the rest 100 as Negative.
I am using SQL Server Analysis-2008 R2. The Class attribute has 2 values, POS-for positive and NEG-for negative.
Also i use Naive Bayes algorithm with maximum input/output attributes=0 (want to use all the attributes) for the classification, the test set max case is set to 30%. The current score from the Lift Chart is 0.60.
Do i have to mix them up, for example 2 POS followed by 1 NEG, in order to get better classification accuracy?
The ordering of the learning instances should not affect classification performance. The probabilities computed by Naive Bayes will be the same for any ordering of instances in the data set.
However, the selection of different test and training sets can affect classification performance. For example, some instances might be inherently more difficult to classify than others.
Are you getting similarly poor training and test performance? If your training performance is good and/or much better than your test performance, your model may be over-fitted. Otherwise, if your training performance is also poor, I would suggest (a) trying a better/stronger/more expressive classifier, e.g., SVM, decision trees etc; and/or (b) making sure your features are representive/expressive enough of the data.