I have a list of strings as labels for training a neural network. Now I want to convert them via one_hot encoding so that I can use them for my tensorflow network.
My input list looks like this:
labels = ['"car"', '"pedestrian"', '"car"', '"truck"', '"car"']
The requested outcome should be something like
one_hot [0,1,0,2,0]
What is the easiest way to do this? Any help would be much appreciated.
Cheers,
Andi
the desired outcome looks like LabelEncoder in sklearn, not like OneHotEncoder - in tf you need CategoryEncoder - BUT it is A preprocessing layer which encodes integer features.:
inp = layers.Input(shape=[X.shape[0]])
x0 = layers.CategoryEncoding(
num_tokens=3, output_mode="multi_hot")(inp)
model = keras.Model(inputs=[inp], outputs=[x0])
model.compile(optimizer= 'adam',
loss='categorical_crossentropy',
metrics=[tf.keras.metrics.CategoricalCrossentropy()])
print(model.summary())
this part gets encoding of unique values... And you can make another branch in this model to input your initial vector & fit it according labels from this reference-branch (it is like join reference-table with fact-table in any database) -- here will be ensemble of referenced-data & your needed data & output...
pay attention to -- num_tokens=3, output_mode="multi_hot" -- are being given explicitly... AND numbers from class_names get apriory to model use, as is Feature Engineering - like this (in pd.DataFrame)
import numpy as np
import pandas as pd
d = {'transport_col':['"car"', '"pedestrian"', '"car"', '"truck"', '"car"']}
dataset_df = pd.DataFrame(data=d)
classes = dataset_df['transport_col'].unique().tolist()
print(f"Label classes: {classes}")
df= dataset_df['transport_col'].map(classes.index).copy()
print(df)
from manual example REF: Encode the categorical label into an integer.
Details: This stage is necessary if your classification label is represented as a string. Note: Keras expected classification labels to be integers.
in another architecture, perhaps, you could use StringLookup
vocab= np.array(np.unique(labels))
inp = tf.keras.Input(shape= labels.shape[0], dtype=tf.string)
x = tf.keras.layers.StringLookup(vocabulary=vocab)(inp)
but labels are dependent vars usually, as opposed to features, and shouldn't be used at Input
Everything in keras.docs
possible FULL CODE:
import numpy as np
import pandas as pd
import keras
X = np.array([['"car"', '"pedestrian"', '"car"', '"truck"', '"car"']])
vocab= np.unique(X)
print(vocab)
y= np.array([[0,1,0,2,0]])
inp = layers.Input(shape=[X.shape[0]], dtype='string')
x0= tf.keras.layers.StringLookup(vocabulary=vocab, name='finish')(inp)
model = keras.Model(inputs=[inp], outputs=[x0])
model.compile(optimizer= 'adam',
loss='categorical_crossentropy',
metrics=[tf.keras.metrics.categorical_crossentropy])
print(model.summary())
from tensorflow.keras import backend as K
for layerIndex, layer in enumerate(model.layers):
print(layerIndex)
func = K.function([model.get_layer(index=0).input], layer.output)
layerOutput = func([X]) # input_data is a numpy array
print(layerOutput)
if layerIndex==1: # the last layer here
scale = lambda x: x - 1
print(scale(layerOutput))
res:
[[0 1 0 2 0]]
another possible Solution for your case - layers.TextVectorization
import numpy as np
import keras
input_array = np.atleast_2d(np.array(['"car"', '"pedestrian"', '"car"', '"truck"', '"car"']))
vocab= np.unique(input_array)
input_data = keras.Input(shape=(None,), dtype='string')
layer = layers.TextVectorization( max_tokens=None, standardize=None, split=None, output_mode="int", vocabulary=vocab)
int_data = layer(input_data)
model = keras.Model(inputs=input_data, outputs=int_data)
output_dataset = model.predict(input_array)
print(output_dataset) # starts from 2 ... probably [0, 1] somehow concerns binarization ?
scale = lambda x: x - 2
print(scale(output_dataset))
result:
array([[0, 1, 0, 2, 0]])
Related
Below is the full code:
import spacy
from tensorflow.keras.utils import to_categorical
from keras.preprocessing.text import Tokenizer
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense,LSTM,Embedding
def read_file(filepath):
with open(filepath) as f:
str_text = f.read()
return str_text
moby_text = read_file('moby_dick.txt')
nlp = spacy.load('en_core_web_sm')
doc = nlp(moby_text)
#getting tokens using list comprehension
tokens = [token.text.lower() for token in doc]
#cleaning text
tokens = [token for token in tokens if token not in '\n\n \n\n\n!"-#$%&()--.*+,-/:;<=>?#[\\]^_`{|}~\t\n ']
train_len = 10+1 # 10 i/p and 1 o/p
text_sequences = []
for i in range(train_len,len(tokens)):
seq = tokens[i-train_len:i]
text_sequences.append(seq)
tokenizer = Tokenizer()
tokenizer.fit_on_texts(text_sequences)
sequences = tokenizer.texts_to_sequences(text_sequences)
for i in sequences[0]:
print(f'{i} : {tokenizer.index_word[i]}')
sequences = np.array(sequences)
vocabulary_size = len(tokenizer.word_counts)
def create_model(vocabulary_size, seq_len):
model = Sequential()
model.add(Embedding(vocabulary_size, 25, input_length=seq_len))
model.add(LSTM(100,return_sequences=True))
model.add(LSTM(100))
model.add(Dense(100,activation='relu'))
model.add(Dense(vocabulary_size, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
return model
X = sequences[:,:-1]
y = sequences[:,-1]
y = to_categorical(y, num_classes=vocabulary_size)
Here in the to_categorical I'm getting the error. I don't understand why? and after reading so many articles I still don't get how to solve it.
IndexError: index 2718 is out of bounds for axis 1 with size 2718
error
seq_len = X.shape[1]
model = create_model(vocabulary_size, seq_len)
model.fit(X, y, epochs=100,verbose=1)
I don't understand the error. I have searched the error and tried different ways to solve it but I can't find anything to solve it. Also, I guess this is because the indices for lists start at 0. And I have done
Y = Y - 1
y = to_categorical(y, num_classes=vocabulary_size)
but this doesn't work because it gives error in the model. So I am back to square one.
Node: 'sequential/embedding/embedding_lookup'
indices[13,9] = 2718 is not in [0, 2718)
[[{{node sequential/embedding/embedding_lookup}}]] [Op:__inference_train_function_5647]
So how can I solve it?
Can someone please help me out? Thank you!!!
The Tokenizer doesn't use 0, it starts counting with 1:
0 is a reserved index that won't be assigned to any word.
Try this:
vocabulary_size = len(tokenizer.word_counts) + 1
I found [this][1] and created this running POC code:
import tensorflow as tf
from tensorflow import keras
import numpy as np
def get_embedding_size(cat_data):
no_of_unique_cat = len(np.unique(cat_data))
return int(min(np.ceil((no_of_unique_cat)/2), 50))
# 3 numerical variables
num_data = np.random.random(size=(10,3))
# 2 categorical variables
cat_data_1 = np.random.randint(0,4,10)
cat_data_2 = np.random.randint(0,5,10)
target = np.random.random(size=(10,1))
no_unique_categories_category_1 = len(np.unique(cat_data_1))
embedding_size_category_1 = get_embedding_size(cat_data_1)
inp_cat_data = keras.layers.Input(shape=(no_unique_categories_category_1,))
# 3 columns
inp_num_data = keras.layers.Input(shape=(num_data.shape[1],))
emb = keras.layers.Embedding(input_dim=no_unique_categories_category_1, output_dim=embedding_size_category_1)(inp_cat_data)
flatten = keras.layers.Flatten()(emb)
# Concatenate two layers
conc = keras.layers.Concatenate()([flatten, inp_num_data])
dense1 = keras.layers.Dense(3, activation=tf.nn.relu,)(conc)
# Creating output layer
out = keras.layers.Dense(1, activation=None)(dense1)
model = keras.Model(inputs=[inp_cat_data, inp_num_data], outputs=out)
model.compile(optimizer='adam',
loss=keras.losses.mean_squared_error,
metrics=[keras.metrics.mean_squared_error])
one_hot_encoded_cat_data_1 = np.eye(cat_data_1.max()+1)[cat_data_1]
model.fit([one_hot_encoded_cat_data_1, num_data], target)
I wonder how could one add the additional categorical variable cat_data_2? I am also wondering, why is one hot encoding still used. Is the whole point of embedding not to make this necessary? Thanks!
model.layers[1].get_weights()[0]
[1]: https://mmuratarat.github.io/2019-06-12/embeddings-with-numeric-variables-Keras
I have trained a model with caffe tools under bin and now I am trying to do testing using python script, I read in an image and preprocess it myself (as I did for my training dataset) and I load the pretrained weights to the net, but I am almost always (99.99% of the time) receiving the same result -0- for every test image. I did consider that my model might be overfitting but after training a few models, I have come to realize the labels I get from predictions are most likely the cause. I have also increased dropout and took random crops to overcome overfitting and I have about 60K for training. The dataset is also roughly balanced. I get between 77 to 87 accuracy during evaluation step of training (depending on how I process data, what architecture I use etc)
Excuse my super hacky code, I have been distant to caffe testing for some time so I suspect the problem is how I pass the input data to the network, but I can't put my finger on it:
import h5py, os
import sys
sys.path.append("/home/X/Desktop/caffe-caffe-0.16/python")
from caffe.io import oversample
from caffe.io import resize_image
import caffe
from random import randint
import numpy as np
import cv2
import matplotlib.pyplot as plt
from collections import Counter as Cnt
meanImg = cv2.imread('/home/caffe/data/Ch/Final_meanImg.png')
model_def = '/home/X/Desktop/caffe-caffe-0.16/models/bvlc_googlenet/deploy.prototxt'
model_weights = '/media/X/DATA/SDet/Google__iter_140000.caffemodel'
# load the model
#caffe.set_mode_gpu()
#caffe.set_device(0)
net = caffe.Net(model_def, # defines the structure of the model
model_weights, # contains the trained weights
caffe.TEST) # use test mode (e.g., don't perform dropout)
with open( '/home/caffe/examples/sdet/SDet/test_random.txt', 'r' ) as T, open('/media/X/DATA/SDet/results/testResults.txt','w') as testResultsFile:
readImgCounter = 0
runningCorrect = 0
runningAcc = 0.0
#testResultsFile.write('filename'+' '+'prediction'+' '+'GT')
lines = T.readlines()
for i,l in enumerate(lines):
sp = l.split(' ')
video = sp[0].split('_')[0]
impath = '/home/caffe/data/Ch/images/'+video+'/'+sp[0] +'.jpg'
img = cv2.imread(impath)
resized_img = resize_image(img, (255,255))
oversampledImages = oversample([resized_img], (224,224)) #5 crops x 2 mirror flips = return 10 images
transposed_img = np.zeros( (10, 3, 224, 224), dtype='f4' )
tp = np.zeros( (1, 3, 224, 224), dtype='f4' )
predictedLabels = []
for j in range(0,oversampledImages.shape[0]-1):
transposed_img[j] = oversampledImages[j].transpose((2,0,1))
tp[0] = transposed_img[j]
net.blobs['data'].data[0] = tp
pred = net.forward(data=tp)
predictedLabels.append(pred['prob'].argmax())
print(predictedLabels)
prediction,num_most_common = Cnt(predictedLabels).most_common(1)[0]
print(prediction)
readImgCounter = readImgCounter + 1
if (prediction == int(sp[1])):
runningCorrect = runningCorrect + 1
runningAcc = runningCorrect / readImgCounter
print('runningAcc:')
print(runningAcc)
print('-----------')
print('runningCorrect:')
print(runningCorrect)
print('-----------')
print('totalImgRead:')
print(readImgCounter)
print('-----------')
testResultsFile.write(sp[0]+' '+str(prediction)+' '+sp[1])
testResultsFile.write('\n')
I have fixed this problem eventually. I am not 100% sure what worked but it was most likely changing the bias to 0 while learning.
i would like to ask a question about a problem that i have for the last couple days.
First of all i am a beginner in machine learning and this is my first time using the XGBoost algorithm so excuse me for any mistakes I have done.
I trained my model to predict whether a log file is malicious or not. After i save and reload my model on a different session i use the predict function which seems to be working normally ( with a few deviations in probabilities but that is another topic, I know I, have seen it in another topic )
The problem is this: Sometimes when i try to predict a "small" csv file after load it seems to be broken predicting only the Zero label, even for indexes that are categorized correct previously.
For example, i load a dataset containing 20.000 values , the predict() is working. I keep only the first 5 of these values using pandas drop, again its working. If i save the 5 values on a different csv and reload it its not working. The same error happens if i just remove by hand all indexes (19.995) and save file only with 5 remaining.
I would bet it is a size of file problem but when i drop the indexes on the dataframe through pandas it seems to be working
Also the number 5 ( of indexes ) is for example purpose the same happens if I delete a large portion of the dataset.
I first came up with this problem after trying to verify by hand some completely new logs, which seem to be classified correctly if thrown into the big csv file but not in a new file on their own.
Here is my load and predict code
##IMPORTS
import os
import pandas as pd
from pandas.compat import StringIO
from datetime import datetime
from langid.langid import LanguageIdentifier, model
import langid
import time
from sklearn.model_selection import train_test_split
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import accuracy_score
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics import precision_score, recall_score
from sklearn.metrics import precision_recall_curve
from sklearn.externals import joblib
from ggplot import ggplot, aes, geom_line
from sklearn.pipeline import Pipeline
from xgboost import XGBClassifier
from sklearn.metrics import average_precision_score
import numpy as np
from sklearn.feature_extraction import DictVectorizer
from sklearn.pipeline import FeatureUnion
from sklearn.base import BaseEstimator, TransformerMixin
from collections import defaultdict
import pickle
df = pd.read_csv('big_test.csv')
df3 = pd.read_csv('small_test.csv')
#This one is necessary for the loaded_model
class ColumnSelector(BaseEstimator, TransformerMixin):
def init(self, column_list):
self.column_list = column_list
def fit(self, x, y=None):
return self
def transform(self, x):
if len(self.column_list) == 1:
return x[self.column_list[0]].values
else:
return x[self.column_list].to_dict(orient='records')
loaded_model = joblib.load('finalized_model.sav')
result = loaded_model.predict(df)
print(result)
df2=df[:5]
result2 = loaded_model.predict(df2)
print(result2)
result3 = loaded_model.predict(df3)
print(result3)
The results i get are these:
[1 0 1 ... 0 0 0]
[1 0 1 0 1]
[0 0 0 0 0]
I can provide any code even from training or my dataset if necessary.
*EDIT: I use a pipeline for my data. I tried to reproduce the error after using xgb to fit the iris data and i could not. Maybe there is something wrong with my pipeline? the code is below :
df = pd.read_csv('big_test.csv')
# df.info()
# Split Dataset
attributes = ['uri','code','r_size','DT_sec','Method','http_version','PenTool','has_referer', 'Lang','LangProb','GibberFlag' ]
x_train, x_test, y_train, y_test = train_test_split(df[attributes], df['Scan'], test_size=0.2,
stratify=df['Scan'], random_state=0)
x_train, x_dev, y_train, y_dev = train_test_split(x_train, y_train, test_size=0.2,
stratify=y_train, random_state=0)
# print('Train:', len(y_train), 'Dev:', len(y_dev), 'Test:', len(y_test))
# set up graph function
def plot_precision_recall_curve(y_true, y_pred_scores):
precision, recall, thresholds = precision_recall_curve(y_true, y_pred_scores)
return ggplot(aes(x='recall', y='precision'),
data=pd.DataFrame({"precision": precision, "recall": recall})) + geom_line()
# XGBClassifier
class ColumnSelector(BaseEstimator, TransformerMixin):
def __init__(self, column_list):
self.column_list = column_list
def fit(self, x, y=None):
return self
def transform(self, x):
if len(self.column_list) == 1:
return x[self.column_list[0]].values
else:
return x[self.column_list].to_dict(orient='records')
count_vectorizer = CountVectorizer(analyzer='char', ngram_range=(1, 2), min_df=10)
dict_vectorizer = DictVectorizer()
xgb = XGBClassifier(seed=0)
pipeline = Pipeline([
("feature_union", FeatureUnion([
('text_features', Pipeline([
('selector', ColumnSelector(['uri'])),
('count_vectorizer', count_vectorizer)
])),
('categorical_features', Pipeline([
('selector', ColumnSelector(['code','r_size','DT_sec','Method','http_version','PenTool','has_referer', 'Lang','LangProb','GibberFlag' ])),
('dict_vectorizer', dict_vectorizer)
]))
])),
('xgb', xgb)
])
pipeline.fit(x_train, y_train)
filename = 'finalized_model.sav'
joblib.dump(pipeline, filename)
Thats due to different dtypes in big and small file.
When you do:
df = pd.read_csv('big_test.csv')
The dtypes are these:
print(df.dtypes)
# Output
uri object
code object # <== Observe this
r_size object # <== Observe this
Scan int64
...
...
...
Now when you do:
df3 = pd.read_csv('small_test.csv')
the dtypes are changed:
print(df3.dtypes)
# Output
uri object
code int64 # <== Now this has changed
r_size int64 # <== Now this has changed
Scan int64
...
...
You see, pandas will try to determine the dtypes of the columns by itself. When you load the big_test.csv, there are some values in code and r_size column which are of string types, due to this whole column dtype is changed to string, which is not done in small_test.csv.
Now due to this change, the dictVectorizer encodes the data in a different way than before and the features are changed, and hence the results are also changed.
If you do this:
df3[['code', 'r_size']] = df3[['code', 'r_size']].astype(str)
and then call the predict(), the results are same again.
I've transformed training and test data set by sklearn OneHotEncoding method. However, trnsformed results have different type shape. So It is impossible to apply to other algorithms like logistic regression.
How do I reshape the test data in accordance with the training data set's shape?
Best Regardings, Chris
import pandas as pd
import numpy as np
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
def data_transformation(data, dummy):
le = LabelEncoder()
# Encoding the columns with multiple categorical levels
for col1 in dummy:
le.fit(data[col1])
data[col1] = le.transform(data[col1])
dummy_data = np.array(data[dummy])
enc = OneHotEncoder()
enc.fit(dummy_data)
dummy_data = enc.transform(dummy_data).toarray()
if __name__ == '__main__':
data = pd.read_csv('train.data', delimiter=',')
data_test = pd.read_csv('test.data', delimiter=',')
dummy_columns = ['Column1', 'Column2']
data = data_transformation(data, dummy_columns)
data_test = data_transformation(data_test, dummy_columns)
# result
# data shape : (200000, 71 )
# data_test shape : ( 15000, 32)
Thank you so much, Vivek! I've solved this issue due to your help.
def data_transformation2(data, data_test, dummy):
le = LabelEncoder()
# Encoding the columns with multiple categorical levels
for col in dummy:
le.fit(data[col])
data[col] = le.transform(data[col])
for col in dummy:
le.fit(data_test[col])
data_test[col] = le.transform(data_test[col])
enc = OneHotEncoder()
dummy_data = np.array(data[dummy])
dummy_data_test = np.array(data_test[dummy])
enc.fit(dummy_data)
dummy_data = enc.transform(dummy_data).toarray()
dummy_data_test = enc.transform(dummy_data_test).toarray()
print(dummy_data.shape)
print(dummy_data_test.shape)