make tf.Estimator use default graph - tensorflow

I am trying to make use of tensorflow protobuffer feeding pipeline. The easiest way seemed to use tf.estimator.Estimator with tf.contrib.data.TFRecordDataset. However, I came across the issue that it creates a new Graph in spite of being launched within with g.as_default(). In following code I see that both model tensors and tensors returned by the TFRecordDataset are the same before I feed them to Estimator, but become different within the Estimator. Any ideas how to put them on the same graph?
# coding: utf-8
import sys
import tensorflow as tf
from keras.applications.inception_v3 import InceptionV3
import numpy as np
final_activation='linear'
g = tf.Graph()
with g.as_default():
model = InceptionV3(weights='imagenet',
include_top=True,
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000)
def model_fn(mode, features, labels, params):
optimizer = params["optimizer"]
opt_params= params.get("opt_params", {})
predictions = model(features)
if (mode == tf.estimator.ModeKeys.TRAIN or
mode == tf.estimator.ModeKeys.EVAL):
loss = tf.contrib.keras.backend.categorical_crossentropy(predictions, labels)
#loss = tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logyhat)
else:
loss = None
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = getattr(tf.train, optimizer)
train_op = optimizer(opt_params).minimize(loss)
else:
train_op = None
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op)
def parser(record):
keys_to_features = {
'height': tf.FixedLenFeature([], tf.int64),
'width': tf.FixedLenFeature([], tf.int64),
'image_raw': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64)
}
features = tf.parse_single_example(
record,
features=keys_to_features)
# Convert from a scalar string tensor to a uint8 tensor
image = tf.decode_raw(features['image_raw'], tf.float32)
height = tf.cast(features['height'], tf.int32)
width = tf.cast(features['width'], tf.int32)
image_shape = tf.stack([height, width, 3])
image = tf.reshape(image, image_shape)
label = tf.cast(features["label"], tf.int32)
return image, label
def get_dataset_inp_fn(filenames, epochs=20):
def dataset_input_fn():
dataset = tf.contrib.data.TFRecordDataset(filenames)
# Use `Dataset.map()` to build a pair of a feature dictionary and a label
# tensor for each example.
dataset = dataset.map(parser)
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.batch(32)
dataset = dataset.repeat(epochs)
iterator = dataset.make_one_shot_iterator()
features, labels = iterator.get_next()
return features, labels
return dataset_input_fn
inpfun = get_dataset_inp_fn(["mydataset.tfrecords"], epochs=20)
x,y = inpfun()
print("X", x.graph)
print("DEFAULT", g)
print("MODEL", model.input.graph)
# everything is on the same graph
if not x.graph is tf.get_default_graph():
raise ValueError()
with tf.Session(graph=g) as sess:
est = tf.estimator.Estimator(
model_fn,
model_dir=None,
config=None,
params={"optimizer": "AdamOptimizer",
"opt_params":{}}
)
est.train(inpfun)

Related

Use Tfrecord to feed multi-input neural network

I have a dataset on Tfrecord that includes images and tabular data, I want to feed those data into a mixed neural network data. I saw examples of how to use multi-input neural network by using numpy arrays
model.fit([X_images,X_tabular],[Y_images,Y_tabular])
but transforming Tfrecord dataset into a numpy array by iterating slows down the process.
Is there a way to train it directly on the Tfrecord data. So far I have a model that train only an images and this is the code that I am using
tfrecords_schema = {
'id': tf.io.FixedLenFeature([], tf.string),
'y_label': tf.io.FixedLenFeature([], tf.int64),
'image': tf.io.FixedLenFeature([], tf.string),
'x_1': tf.io.FixedLenFeature([], tf.float32),
'x_2': tf.io.FixedLenFeature([], tf.float32),
'x_3': tf.io.FixedLenFeature([], tf.int64),
'x_4': tf.io.FixedLenFeature([], tf.int64),
}
def _parse_function(example_proto):
parsed_example = tf.io.parse_single_example(example_proto, tfrecords_schema)
return parsed_example['image'], parsed_example['y_label']
def _parse_error(image, label):
return image != b''
def _preprocess_function(image, label):
image = tf.image.decode_jpeg(image)
image = tf.image.resize(image, (299, 299))
label = label_decoder(label)
return image, label
train_data = (
train_data
.map(_parse_function)
.filter(_parse_error)
.map(_preprocess_function)
.apply(tf.data.experimental.ignore_errors())
.batch(BATCH_SIZE)
)
validation_data = (
validation_data
.map(_parse_function)
.filter(_parse_error)
.map(_preprocess_function)
.apply(tf.data.experimental.ignore_errors())
.batch(BATCH_SIZE)
)
AUTOTUNE = tf.data.experimental.AUTOTUNE
train_data = train_data.prefetch(buffer_size=AUTOTUNE)
validation_data = validation_data.prefetch(buffer_size=AUTOTUNE)
def make_model(image_shape, num_classes):
inputs = tf.keras.Input(shape=image_shape)
x = tf.keras.applications.inception_v3.preprocess_input(inputs)
base_model = tf.keras.applications.InceptionV3(input_shape=IMAGE_SHAPE, include_top=False, weights='imagenet')
base_model.trainable = False
x = base_model(x, training=False)
global_average_layer = tf.keras.layers.GlobalAveragePooling2D()
x = global_average_layer(x)
x = tf.keras.layers.Dropout(0.3)(x)
prediction_layer = tf.keras.layers.Dense(num_classes)
outputs = prediction_layer(x)
return tf.keras.Model(inputs, outputs)
model = make_model(IMAGE_SHAPE, NUM_CLASSES)
learning_rate = 0.0001
model.compile(
optimizer=tf.keras.optimizers.Adam(lr=learning_rate),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=["accuracy"]
)
callbacks = [
tf.keras.callbacks.ModelCheckpoint(filepath="tf/pvc_data/tmp/weights.hdf5", verbose=1, save_best_only=True)
]
history = model.fit(
train_data, epochs=1, callbacks=callbacks, validation_data=validation_data
)

Sagemaker and Tensorflow model not saved

I am learning Sagemaker and I have this entry point:
import os
import tensorflow as tf
from tensorflow.python.estimator.model_fn import ModeKeys as Modes
INPUT_TENSOR_NAME = 'inputs'
SIGNATURE_NAME = 'predictions'
LEARNING_RATE = 0.001
def model_fn(features, labels, mode, params):
# Input Layer
input_layer = tf.reshape(features[INPUT_TENSOR_NAME], [-1, 28, 28, 1])
# Convolutional Layer #1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5, 5],
padding='same',
activation=tf.nn.relu)
# Pooling Layer #1
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
# Convolutional Layer #2 and Pooling Layer #2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5, 5],
padding='same',
activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
# Dense Layer
pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
dropout = tf.layers.dropout(
inputs=dense, rate=0.4, training=(mode == Modes.TRAIN))
# Logits Layer
logits = tf.layers.dense(inputs=dropout, units=10)
# Define operations
if mode in (Modes.PREDICT, Modes.EVAL):
predicted_indices = tf.argmax(input=logits, axis=1)
probabilities = tf.nn.softmax(logits, name='softmax_tensor')
if mode in (Modes.TRAIN, Modes.EVAL):
global_step = tf.train.get_or_create_global_step()
label_indices = tf.cast(labels, tf.int32)
loss = tf.losses.softmax_cross_entropy(
onehot_labels=tf.one_hot(label_indices, depth=10), logits=logits)
tf.summary.scalar('OptimizeLoss', loss)
if mode == Modes.PREDICT:
predictions = {
'classes': predicted_indices,
'probabilities': probabilities
}
export_outputs = {
SIGNATURE_NAME: tf.estimator.export.PredictOutput(predictions)
}
return tf.estimator.EstimatorSpec(
mode, predictions=predictions, export_outputs=export_outputs)
if mode == Modes.TRAIN:
optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(loss, global_step=global_step)
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
if mode == Modes.EVAL:
eval_metric_ops = {
'accuracy': tf.metrics.accuracy(label_indices, predicted_indices)
}
return tf.estimator.EstimatorSpec(
mode, loss=loss, eval_metric_ops=eval_metric_ops)
def serving_input_fn(params):
inputs = {INPUT_TENSOR_NAME: tf.placeholder(tf.float32, [None, 784])}
return tf.estimator.export.ServingInputReceiver(inputs, inputs)
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
image.set_shape([784])
image = tf.cast(image, tf.float32) * (1. / 255)
label = tf.cast(features['label'], tf.int32)
return image, label
def train_input_fn(training_dir, params):
return _input_fn(training_dir, 'train.tfrecords', batch_size=100)
def eval_input_fn(training_dir, params):
return _input_fn(training_dir, 'test.tfrecords', batch_size=100)
def _input_fn(training_dir, training_filename, batch_size=100):
test_file = os.path.join(training_dir, training_filename)
filename_queue = tf.train.string_input_producer([test_file])
image, label = read_and_decode(filename_queue)
images, labels = tf.train.batch(
[image, label], batch_size=batch_size,
capacity=1000 + 3 * batch_size)
return {INPUT_TENSOR_NAME: images}, labels
def neo_preprocess(payload, content_type):
import logging
import numpy as np
import io
logging.info('Invoking user-defined pre-processing function')
if content_type != 'application/x-image' and content_type != 'application/vnd+python.numpy+binary':
raise RuntimeError('Content type must be application/x-image or application/vnd+python.numpy+binary')
f = io.BytesIO(payload)
image = np.load(f)*255
return image
### NOTE: this function cannot use MXNet
def neo_postprocess(result):
import logging
import numpy as np
import json
logging.info('Invoking user-defined post-processing function')
# Softmax (assumes batch size 1)
result = np.squeeze(result)
result_exp = np.exp(result - np.max(result))
result = result_exp / np.sum(result_exp)
response_body = json.dumps(result.tolist())
content_type = 'application/json'
return response_body, content_type
And I am training it
estimator = TensorFlow(entry_point='cnn_fashion_mnist.py',
role=role,
input_mode='Pipe',
training_steps=1,
evaluation_steps=1,
train_instance_count=1,
output_path=output_path,
train_instance_type='ml.c5.2xlarge',
base_job_name='mnist')
so far it is trying correctly and it tells me that everything when well, but when I check the output there is nothing there or if I try to deploy it I get the error saying it couldn't find the model because there is nothing in the bucker, any ideas or extra configurations? Thank you
Looks like you are using one of the older Tensorflow versions.
We would recommend switching to a newer more straight-forward way of running Tensorflow in SageMaker (script mode) by switching to a more recent Tensorflow version.
You can read more about it in our documentation:
https://sagemaker.readthedocs.io/en/stable/using_tf.html
Here is an example that might help:
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/tensorflow_script_mode_training_and_serving/tensorflow_script_mode_training_and_serving.ipynb
Are you sure that your entry point has code that is really executed? You need a "main" / top--level code outside of functions. This code is executed as soon as you start the training. At least in my running examples.
import os
import tensorflow as tf
from tensorflow.python.estimator.model_fn import ModeKeys as Modes
INPUT_TENSOR_NAME = 'inputs'
SIGNATURE_NAME = 'predictions'
LEARNING_RATE = 0.001
ADD CODE FOR CREATION OF ESTIMATOR + TRAIN +....
ADD CODE THAT SAVES YOUR MODEL(e.g. joblib.dump(xxx, path)
In addition for executing the training, your "estimator = TensorFlow(..." should be followed by "estimater.fit(...)"-like call.
Have you double-checked in the protocolls for your training request in the aws console which part of your code was executed?

Create SavedModel for BERT

I'm using this Colab for BERT model.
In last cells in order to make predictions we have:
def getPrediction(in_sentences):
labels = ["Negative", "Positive"]
input_examples = [run_classifier.InputExample(guid="", text_a = x, text_b = None, label = 0) for x in in_sentences] # here, "" is just a dummy label
input_features = run_classifier.convert_examples_to_features(input_examples, label_list, MAX_SEQ_LENGTH, tokenizer)
predict_input_fn = run_classifier.input_fn_builder(features=input_features, seq_length=MAX_SEQ_LENGTH, is_training=False, drop_remainder=False)
predictions = estimator.predict(predict_input_fn)
return [(sentence, prediction['probabilities'], labels[prediction['labels']]) for sentence, prediction in zip(in_sentences, predictions)]
pred_sentences = [
"That movie was absolutely awful",
"The acting was a bit lacking",
"The film was creative and surprising",
"Absolutely fantastic!"
]
predictions = getPrediction(pred_sentences)
I want to create a 'SavedModel' to be used with TF serving. How to create a SavedModel for this model?
Normally I would define the following:
def serving_input_fn():
"""Create serving input function to be able to serve predictions later
using provided inputs
:return:
"""
feature_placeholders = {
'sentence': tf.placeholder(tf.string, [None]),
}
return tf.estimator.export.ServingInputReceiver(feature_placeholders,
feature_placeholders)
latest_ckpt = tf.train.latest_checkpoint(OUTPUT_DIR)
last_eval = estimator.evaluate(input_fn=test_input_fn, steps=None, checkpoint_path=latest_ckpt)
# Export the model to GCS for serving.
exporter = tf.estimator.LatestExporter('exporter', serving_input_fn, exports_to_keep=None)
exporter.export(estimator, OUTPUT_DIR, latest_ckpt, last_eval, is_the_final_export=True)
Not sure how to define my tf.estimator.export.ServingInputReceiver
If you look at create_model function present in notebook. It takes some arguments. These are the features which will be passed to the model.
You need to update the serving_input_fn function to include them.
def serving_input_fn():
feature_spec = {
"input_ids" : tf.FixedLenFeature([MAX_SEQ_LENGTH], tf.int64),
"input_mask" : tf.FixedLenFeature([MAX_SEQ_LENGTH], tf.int64),
"segment_ids" : tf.FixedLenFeature([MAX_SEQ_LENGTH], tf.int64),
"label_ids" : tf.FixedLenFeature([], tf.int64)
}
serialized_tf_example = tf.placeholder(dtype=tf.string,
shape=[None],
name='input_example_tensor')
receiver_tensors = {'example': serialized_tf_example}
features = tf.parse_example(serialized_tf_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)

got shape [4575, 32, 32, 3], but wanted [4575] Tensorflow

I'm a newbie of Tensorflow. I have created CNNs of Tensorflow followingthis topic : A Guide to TF Layers: Building a Convolutional Neural Network
I want to create CNNs to using it for training traffic sign dataset. The dataset I use is : BelgiumTS. It includes two part, one part stores images for training, second parth stores images for testing. All of this is .ppm format.
I define a method to load the dataset :
def load_data(data_dir):
"""Load Data and return two numpy array"""
directories = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir,d))]
list_labels = []
list_images = []
for d in directories:
label_dir = os.path.join(data_dir,d)
file_names = [os.path.join(label_dir,f) for f in os.listdir(label_dir) if f.endswith(".ppm")]
for f in file_names:
list_images.append(skimage.data.imread(f))
list_labels.append(int(d))
#resize images to 32x32 pixel
list_images32 = [skimage.transform.resize(image,(32,32)) for image in list_images]
#Got Error "Value passed to parameter 'input' has DataType float64 not in list of allowed values: float16, float32" if I don't add this line
list_images32 = tf.cast(list_images32,tf.float32)
images = np.array(list_images32)
labels = np.asarray(list_labels,dtype=int32)
return images,labels
And this is CNNs define :
def cnn_model_fn(features, labels, mode):
#Input layer
input_layer = tf.reshape(features["x"],[-1,32,32,1])
#Convolutional layer 1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5,5],
padding="same",
activation=tf.nn.relu)
#Pooling layer 1
pool1 = tf.layers.max_pooling2d(inputs=conv1,pool_size=[2,2],strides=2)
#Convolutional layer 2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5,5],
padding="same",
activation=tf.nn.relu)
#Pooling layer 2
pool2 = tf.layers.max_pooling2d(inputs=conv2,pool_size=[2,2],strides=2)
#Dense layer
pool2_flat = tf.reshape(pool2,[-1,7*7*64])
dense = tf.layers.dense(inputs=pool2_flat,units=1024,activation=tf.nn.relu)
#Dropout
dropout = tf.layers.dropout(inputs=dense,rate=0.4,training=mode == tf.estimator.ModeKeys.TRAIN)
#Logits layer
logits = tf.layers.dense(inputs=dropout,units=10)
predictions = {
"classes": tf.argmax(input=logits,axis=1),
"probabilities": tf.nn.softmax(logits,name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode,predictions=predictions)
#Calculate Loss Value
onehot_labels = tf.one_hot(indices=tf.cast(labels,tf.int32),depth=10)
loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels,logits=logits)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss = loss,
global_step = tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,train_op=train_op)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels,predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,eval_metric_ops=eval_metric_ops)
I run my app in main :
def main(unused_argv):
# Load training and eval data
train_data_dir = "W:/Projects/AutoDrive/Training"
test_data_dir = "W:/Projects/AutoDrive/Testing"
images,labels = load_data(train_data_dir)
test_images,test_labels = load_data(test_data_dir)
# Create the Estimator
autoDrive_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/autoDrive_convnet_model")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": images},
y=labels,
batch_size=100,
num_epochs=None,
shuffle=True)
autoDrive_classifier.train(
input_fn=train_input_fn,
steps=10000,
hooks=[logging_hook])
# Evaluate the model and print results
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": test_images},
y=test_labels,
num_epochs=1,
shuffle=False)
eval_results = autoDrive_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
But when I run it, I got this error : ValueError: Argument must be a dense tensor ... got shape [4575, 32, 32, 3], but wanted [4575] Did I lost something ?
Finally, this is full code :
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
import os
import skimage.data
import skimage.transform
import matplotlib
import matplotlib.pyplot as plt
tf.logging.set_verbosity(tf.logging.INFO)
def load_data(data_dir):
"""Load Data and return two lists"""
directories = [d for d in os.listdir(data_dir) if
os.path.isdir(os.path.join(data_dir,d))]
list_labels = []
list_images = []
for d in directories:
label_dir = os.path.join(data_dir,d)
file_names = [os.path.join(label_dir,f) for f in os.listdir(label_dir) if f.endswith(".ppm")]
for f in file_names:
list_images.append(skimage.data.imread(f))
list_labels.append(int(d))
list_images32 = [skimage.transform.resize(image,(32,32)) for image in list_images]
list_images32 = tf.cast(list_images32,tf.float32)
images = np.array(list_images32)
labels = np.asarray(list_labels,dtype=int32)
return images,labels
def cnn_model_fn(features, labels, mode):
#Input layer
input_layer = tf.reshape(features["x"],[-1,32,32,1])
#Convolutional layer 1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5,5],
padding="same",
activation=tf.nn.relu)
#Pooling layer 1
pool1 = tf.layers.max_pooling2d(inputs=conv1,pool_size=[2,2],strides=2)
#Convolutional layer 2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5,5],
padding="same",
activation=tf.nn.relu)
#Pooling layer 2
pool2 = tf.layers.max_pooling2d(inputs=conv2,pool_size=[2,2],strides=2)
#Dense layer
pool2_flat = tf.reshape(pool2,[-1,7*7*64])
dense = tf.layers.dense(inputs=pool2_flat,units=1024,activation=tf.nn.relu)
#Dropout
dropout = tf.layers.dropout(inputs=dense,rate=0.4,training=mode == tf.estimator.ModeKeys.TRAIN)
#Logits layer
logits = tf.layers.dense(inputs=dropout,units=10)
predictions = {
"classes": tf.argmax(input=logits,axis=1),
"probabilities": tf.nn.softmax(logits,name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode,predictions=predictions)
#Calculate Loss Value
onehot_labels = tf.one_hot(indices=tf.cast(labels,tf.int32),depth=10)
loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels,logits=logits)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss = loss,
global_step = tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,train_op=train_op)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels,predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,eval_metric_ops=eval_metric_ops)
def main(unused_argv):
# Load training and eval data
train_data_dir = "W:/Projects/TSRecognition/Training"
test_data_dir = "W:/Projects/TSRecognition/Testing"
images,labels = load_data(train_data_dir)
test_images,test_labels = load_data(test_data_dir)
# Create the Estimator
TSRecognition_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/TSRecognition_convnet_model")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": images},
y=labels,
batch_size=100,
num_epochs=None,
shuffle=True)
TSRecognition_classifier.train(
input_fn=train_input_fn,
steps=10000,
hooks=[logging_hook])
# Evaluate the model and print results
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": test_images},
y=test_labels,
num_epochs=1,
shuffle=False)
eval_results = TSRecognition_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
if __name__ == "__main__":
tf.app.run()
Short answer for your code:
Get rid of the np.array and np.asarray calls in your load_data function. In particular, change:
list_images32 = [skimage.transform.resize(image,(32,32)) for image in list_images]
...to...
list_images32 = [skimage.transform.resize(image,(32,32)).astype(np.float32).tolist() for image in list_images]
...and return list_images32 AS IS from your load_data function. Don't "wrap it" with the np.asarray() call. The tolist() part of my suggestion is what is important. With the astype() call I'm just suggesting doing in numpy something you're doing in TensorFlow.
Simply getting rid of the np.asarray you have on list_labels should suffice for your labels.
The full answer for those that want to understand what's going on...
The "got shape...but wanted" exception is thrown from exactly one place in TensorFlow (tensor_util.py) and the reason is this function:
def _GetDenseDimensions(list_of_lists):
"""Returns the inferred dense dimensions of a list of lists."""
if not isinstance(list_of_lists, (list, tuple)):
return []
elif not list_of_lists:
return [0]
else:
return [len(list_of_lists)] + _GetDenseDimensions(list_of_lists[0])
It is trying to traverse what it assumes are nested plain Python lists or plain Python tuples; it doesn't know what to do with the Numpy array type it finds in your data structure because of the np.array/np.asarray calls.

Tensorflow, read tfrecord without a graph

I tried to write a good structured Neural network model with Tensorflow. But I met a problem about feed the data from tfrecord into the graph. The code is as below, it hangs on at the following function, how can I make it work?
images, labels = network.load_tfrecord_data(1)
this function can not get the features (images) and labels from my datafile, .tfrecords?
Any idea will be appreciated?
from __future__ import division
from __future__ import print_function
import datetime
import numpy as np
import tensorflow as tf
layers = tf.contrib.layers
losses = tf.contrib.losses
metrics = tf.contrib.metrics
LABELS = 10
WIDTH = 28
HEIGHT = 28
HIDDEN = 100
def read_and_decode_single_example(filename):
filename_queue = tf.train.string_input_producer([filename], num_epochs=None)
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'label': tf.FixedLenFeature([], tf.int64),
'image': tf.FixedLenFeature([50176], tf.int64)
})
label = features['label']
image = features['image']
image = tf.reshape(image, [-1, 224, 224, 1])
label = tf.one_hot(label - 1, 11, dtype=tf.int64)
return label, image
class Network:
def __init__(self, logdir, experiment, threads):
# Construct the graph
with tf.name_scope("inputs"):
self.images = tf.placeholder(tf.float32, [None, WIDTH, HEIGHT, 1], name="images")
self.labels = tf.placeholder(tf.int64, [None], name="labels")
# self.keep_prob = keep_prob
self.keep_prob = tf.placeholder(tf.float32, name="keep_prob")
flattened_images = layers.flatten(self.images)
hidden_layer = layers.fully_connected(flattened_images, num_outputs=HIDDEN, activation_fn=tf.nn.relu, scope="hidden_layer")
output_layer = layers.fully_connected(hidden_layer, num_outputs=LABELS, activation_fn=None, scope="output_layer")
loss = losses.sparse_softmax_cross_entropy(labels=self.labels, logits=output_layer, scope="loss")
self.training = layers.optimize_loss(loss, None, None, tf.train.AdamOptimizer(), summaries=['loss', 'gradients', 'gradient_norm'], name='training')
with tf.name_scope("accuracy"):
predictions = tf.argmax(output_layer, 1, name="predictions")
accuracy = metrics.accuracy(predictions, self.labels)
tf.summary.scalar("training/accuracy", accuracy)
self.accuracy = metrics.accuracy(predictions, self.labels)
with tf.name_scope("confusion_matrix"):
confusion_matrix = metrics.confusion_matrix(predictions, self.labels, weights=tf.not_equal(predictions, self.labels), dtype=tf.float32)
confusion_image = tf.reshape(confusion_matrix, [1, LABELS, LABELS, 1])
# Summaries
self.summaries = {'training': tf.summary.merge_all() }
for dataset in ["dev", "test"]:
self.summaries[dataset] = tf.summary.scalar(dataset + "/loss", loss)
self.summaries[dataset] = tf.summary.scalar(dataset + "/accuracy", accuracy)
self.summaries[dataset] = tf.summary.image(dataset + "/confusion_matrix", confusion_image)
# Create the session
self.session = tf.Session(config=tf.ConfigProto(inter_op_parallelism_threads=threads,
intra_op_parallelism_threads=threads))
self.session.run(tf.global_variables_initializer())
timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H%M%S")
self.summary_writer = tf.summary.FileWriter("{}/{}-{}".format(logdir, timestamp, experiment), graph=self.session.graph, flush_secs=10)
self.steps = 0
def train(self, images, labels, keep_prob):
self.steps += 1
feed_dict = {self.images: self.session.run(images), self.labels: self.session.run(labels), self.keep_prob: keep_prob}
if self.steps == 1:
metadata = tf.RunMetadata()
self.session.run(self.training, feed_dict, options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE), run_metadata=metadata)
self.summary_writer.add_run_metadata(metadata, 'step1')
elif self.steps % 100 == 0:
_, summary = self.session.run([self.training, self.summaries['training']], feed_dict)
self.summary_writer.add_summary(summary, self.steps)
else:
self.session.run(self.training, feed_dict)
def evaluate(self, dataset, images, labels):
feed_dict ={self.images: images, self.labels: labels, self.keep_prob: 1}
summary = self.summaries[dataset].eval({self.images: images, self.labels: labels, self.keep_prob: 1}, self.session)
self.summary_writer.add_summary(summary, self.steps)
def load_tfrecord_data(self, training):
training = training
if training:
label, image = read_and_decode_single_example("mhad_Op_train.tfrecords")
# print(self.session.run(image))
else:
label, image = read_and_decode_single_example("mhad_Op_test.tfrecords")
# image = tf.cast(image, tf.float32) / 255.
images_batch, labels_batch = tf.train.shuffle_batch(
[image, label], batch_size=50, num_threads=2,
capacity=80,
min_after_dequeue=30)
return images_batch, labels_batch
if __name__ == '__main__':
# Fix random seed
np.random.seed(42)
tf.set_random_seed(42)
# Parse arguments
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=256, type=int, help='Batch size.')
parser.add_argument('--epochs', default=50, type=int, help='Number of epochs.')
parser.add_argument('--logdir', default="logs", type=str, help='Logdir name.')
parser.add_argument('--exp', default="mnist-final-confusion_matrix_customized_loss", type=str, help='Experiment name.')
parser.add_argument('--threads', default=1, type=int, help='Maximum number of threads to use.')
args = parser.parse_args()
# Load the data
keep_prob = 1
# Construct the network
network = Network(logdir=args.logdir, experiment=args.exp, threads=args.threads)
# Train
for i in range(args.epochs):
images, labels = network.load_tfrecord_data(1)
network.train(images, labels, keep_prob)
print('current epoch', i)
You need to start the queue before using images, labels in your model.
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
images, labels = network.load_tfrecord_data(1)
...
coord.request_stop()
coord.join(threads)
Check this tutorial for a full example