Related
I have an array,
a = np.array([1, 3, 5, 10])
I would like to create a function that calculates the distance between each of its elements from every other element. There should be no for loop as speed is critical.
The expected result of the above would be:
array([[0, 2, 4, 9],
[2, 0, 2, 7],
[4, 2, 0, 5],
[9, 7, 5, 0]])
You can use numpy.subtract.outer:
np.abs(np.subtract.outer(a, a))
array([[0, 2, 4, 9],
[2, 0, 2, 7],
[4, 2, 0, 5],
[9, 7, 5, 0]])
Or equivalently use either of the followings:
np.abs(a - a[:, np.newaxis])
np.abs(a - a[:, None])
np.abs(a - a.reshape((-1, 1)))
I wonder if this is possible, so I have two 2D arrays:
X[7][9] = 10
Y[7][9] = 5
From above info I want to create following two 2D arrays:
X'[5][10] = 9
Y'[5][10] = 7
Is it possible to accomplish this? Values of X and Y are bounded and won't exceed shape of X and Y. Also X and Y has the same shape.
thanks in advance.
You should be able to use np.nditer to keep track of the multi-index and the corresponding values of the arrays.
rng = np.random.RandomState(0)
X = rng.randint(low=0, high=10, size=(10, 10))
Y = rng.randint(low=0, high=10, size=(10, 10))
X_prime = X.copy()
Y_prime = Y.copy()
it = np.nditer([X, Y], flags=['multi_index'])
for x, y in it:
i, j = it.multi_index
X_prime[y, x] = j
Y_prime[y, x] = i
I believe this is the result you were expecting:
>>> X[7, 9], Y[7, 9]
(3, 9)
>>> X_prime[9, 3], Y_prime[9, 3]
(9, 7)
>>> X[1, 2], Y[1, 2]
(8, 2)
>>> X_prime[2, 8], Y_prime[2, 8]
(2, 1)
In [147]: X = np.random.randint(0,5,(5,5))
In [148]: Y = np.random.randint(0,5,(5,5))
Similar to Matt's answer, but using ndindex to generate the indices. There are various ways of generating all such values. Internally I believe ndindex uses nditer:
In [149]: X_,Y_ = np.zeros_like(X)-1,np.zeros_like(Y)-1
In [150]: for i,j in np.ndindex(*X.shape):
...: k,l = X[i,j], Y[i,j]
...: X_[k,l] = i
...: Y_[k,l] = j
...:
In [151]: X
Out[151]:
array([[2, 4, 3, 4, 2],
[0, 3, 0, 2, 3],
[1, 1, 4, 4, 4],
[2, 1, 2, 2, 0],
[0, 1, 0, 1, 4]])
In [152]: Y
Out[152]:
array([[1, 2, 1, 3, 0],
[4, 2, 4, 0, 4],
[4, 3, 3, 2, 1],
[0, 3, 0, 2, 2],
[1, 4, 2, 0, 0]])
In [153]: X_
Out[153]:
array([[-1, 4, 4, -1, 1],
[ 4, -1, -1, 3, 4],
[ 3, 0, 3, -1, -1],
[-1, 0, 1, -1, 1],
[ 4, 2, 2, 2, -1]])
In [154]: Y_
Out[154]:
array([[-1, 0, 2, -1, 2],
[ 3, -1, -1, 1, 1],
[ 2, 0, 3, -1, -1],
[-1, 2, 1, -1, 4],
[ 4, 4, 3, 2, -1]])
Notice that with randomly generated arrays, the mapping is not full (the -1 values). And if there are duplicates, the last replaces previous values.
Handling duplicates - note the change in X_:
In [156]: for i,j in np.ndindex(*X.shape):
...: k,l = X[i,j], Y[i,j]
...: if X_[k,l]==-1:
...: X_[k,l] = i
...: Y_[k,l] = j
...: else:
...: X_[k,l] += i
...: Y_[k,l] += j
...:
...:
In [157]: X_
Out[157]:
array([[-1, 4, 7, -1, 2],
[ 4, -1, -1, 5, 6],
[ 7, 0, 3, -1, -1],
[-1, 0, 1, -1, 1],
[ 4, 2, 2, 2, -1]])
If the mapping is complete and one to one, it might be possible to do this mapping in a whole-array non-iterative fashion, which would be faster than this.
Suppose I have a matrix A with some arbitrary values:
array([[ 2, 4, 5, 3],
[ 1, 6, 8, 9],
[ 8, 7, 0, 2]])
And a matrix B which contains indices of elements in A:
array([[0, 0, 1, 2],
[0, 3, 2, 1],
[3, 2, 1, 0]])
How do I select values from A pointed by B, i.e.:
A[B] = [[2, 2, 4, 5],
[1, 9, 8, 6],
[2, 0, 7, 8]]
EDIT: np.take_along_axis is a builtin function for this use case implemented since numpy 1.15. See #hpaulj 's answer below for how to use it.
You can use NumPy's advanced indexing -
A[np.arange(A.shape[0])[:,None],B]
One can also use linear indexing -
m,n = A.shape
out = np.take(A,B + n*np.arange(m)[:,None])
Sample run -
In [40]: A
Out[40]:
array([[2, 4, 5, 3],
[1, 6, 8, 9],
[8, 7, 0, 2]])
In [41]: B
Out[41]:
array([[0, 0, 1, 2],
[0, 3, 2, 1],
[3, 2, 1, 0]])
In [42]: A[np.arange(A.shape[0])[:,None],B]
Out[42]:
array([[2, 2, 4, 5],
[1, 9, 8, 6],
[2, 0, 7, 8]])
In [43]: m,n = A.shape
In [44]: np.take(A,B + n*np.arange(m)[:,None])
Out[44]:
array([[2, 2, 4, 5],
[1, 9, 8, 6],
[2, 0, 7, 8]])
More recent versions have added a take_along_axis function that does the job:
A = np.array([[ 2, 4, 5, 3],
[ 1, 6, 8, 9],
[ 8, 7, 0, 2]])
B = np.array([[0, 0, 1, 2],
[0, 3, 2, 1],
[3, 2, 1, 0]])
np.take_along_axis(A, B, 1)
Out[]:
array([[2, 2, 4, 5],
[1, 9, 8, 6],
[2, 0, 7, 8]])
There's also a put_along_axis.
I know this is an old question, but another way of doing it using indices is:
A[np.indices(B.shape)[0], B]
output:
[[2 2 4 5]
[1 9 8 6]
[2 0 7 8]]
Following is the solution using for loop:
outlist = []
for i in range(len(B)):
lst = []
for j in range(len(B[i])):
lst.append(A[i][B[i][j]])
outlist.append(lst)
outarray = np.asarray(outlist)
print(outarray)
Above can also be written in more succinct list comprehension form:
outlist = [ [A[i][B[i][j]] for j in range(len(B[i]))]
for i in range(len(B)) ]
outarray = np.asarray(outlist)
print(outarray)
Output:
[[2 2 4 5]
[1 9 8 6]
[2 0 7 8]]
Suppose I have a matrix A with some arbitrary values:
array([[ 2, 4, 5, 3],
[ 1, 6, 8, 9],
[ 8, 7, 0, 2]])
And a matrix B which contains indices of elements in A:
array([[0, 0, 1, 2],
[0, 3, 2, 1],
[3, 2, 1, 0]])
How do I select values from A pointed by B, i.e.:
A[B] = [[2, 2, 4, 5],
[1, 9, 8, 6],
[2, 0, 7, 8]]
EDIT: np.take_along_axis is a builtin function for this use case implemented since numpy 1.15. See #hpaulj 's answer below for how to use it.
You can use NumPy's advanced indexing -
A[np.arange(A.shape[0])[:,None],B]
One can also use linear indexing -
m,n = A.shape
out = np.take(A,B + n*np.arange(m)[:,None])
Sample run -
In [40]: A
Out[40]:
array([[2, 4, 5, 3],
[1, 6, 8, 9],
[8, 7, 0, 2]])
In [41]: B
Out[41]:
array([[0, 0, 1, 2],
[0, 3, 2, 1],
[3, 2, 1, 0]])
In [42]: A[np.arange(A.shape[0])[:,None],B]
Out[42]:
array([[2, 2, 4, 5],
[1, 9, 8, 6],
[2, 0, 7, 8]])
In [43]: m,n = A.shape
In [44]: np.take(A,B + n*np.arange(m)[:,None])
Out[44]:
array([[2, 2, 4, 5],
[1, 9, 8, 6],
[2, 0, 7, 8]])
More recent versions have added a take_along_axis function that does the job:
A = np.array([[ 2, 4, 5, 3],
[ 1, 6, 8, 9],
[ 8, 7, 0, 2]])
B = np.array([[0, 0, 1, 2],
[0, 3, 2, 1],
[3, 2, 1, 0]])
np.take_along_axis(A, B, 1)
Out[]:
array([[2, 2, 4, 5],
[1, 9, 8, 6],
[2, 0, 7, 8]])
There's also a put_along_axis.
I know this is an old question, but another way of doing it using indices is:
A[np.indices(B.shape)[0], B]
output:
[[2 2 4 5]
[1 9 8 6]
[2 0 7 8]]
Following is the solution using for loop:
outlist = []
for i in range(len(B)):
lst = []
for j in range(len(B[i])):
lst.append(A[i][B[i][j]])
outlist.append(lst)
outarray = np.asarray(outlist)
print(outarray)
Above can also be written in more succinct list comprehension form:
outlist = [ [A[i][B[i][j]] for j in range(len(B[i]))]
for i in range(len(B)) ]
outarray = np.asarray(outlist)
print(outarray)
Output:
[[2 2 4 5]
[1 9 8 6]
[2 0 7 8]]
I have a 2-d numpy array as follows:
a = np.array([[1,5,9,13],
[2,6,10,14],
[3,7,11,15],
[4,8,12,16]]
I want to extract it into patches of 2 by 2 sizes with out repeating the elements.
The answer should exactly be the same. This can be 3-d array or list with the same order of elements as below:
[[[1,5],
[2,6]],
[[3,7],
[4,8]],
[[9,13],
[10,14]],
[[11,15],
[12,16]]]
How can do it easily?
In my real problem the size of a is (36, 72). I can not do it one by one. I want programmatic way of doing it.
Using scikit-image:
import numpy as np
from skimage.util import view_as_blocks
a = np.array([[1,5,9,13],
[2,6,10,14],
[3,7,11,15],
[4,8,12,16]])
print(view_as_blocks(a, (2, 2)))
You can achieve it with a combination of np.reshape and np.swapaxes like so -
def extract_blocks(a, blocksize, keep_as_view=False):
M,N = a.shape
b0, b1 = blocksize
if keep_as_view==0:
return a.reshape(M//b0,b0,N//b1,b1).swapaxes(1,2).reshape(-1,b0,b1)
else:
return a.reshape(M//b0,b0,N//b1,b1).swapaxes(1,2)
As can be seen there are two ways to use it - With keep_as_view flag turned off (default one) or on. With keep_as_view = False, we are reshaping the swapped-axes to a final output of 3D, while with keep_as_view = True, we will keep it 4D and that will be a view into the input array and hence, virtually free on runtime. We will verify it with a sample case run later on.
Sample cases
Let's use a sample input array, like so -
In [94]: a
Out[94]:
array([[2, 2, 6, 1, 3, 6],
[1, 0, 1, 0, 0, 3],
[4, 0, 0, 4, 1, 7],
[3, 2, 4, 7, 2, 4],
[8, 0, 7, 3, 4, 6],
[1, 5, 6, 2, 1, 8]])
Now, let's use some block-sizes for testing. Let's use a blocksize of (2,3) with the view-flag turned off and on -
In [95]: extract_blocks(a, (2,3)) # Blocksize : (2,3)
Out[95]:
array([[[2, 2, 6],
[1, 0, 1]],
[[1, 3, 6],
[0, 0, 3]],
[[4, 0, 0],
[3, 2, 4]],
[[4, 1, 7],
[7, 2, 4]],
[[8, 0, 7],
[1, 5, 6]],
[[3, 4, 6],
[2, 1, 8]]])
In [48]: extract_blocks(a, (2,3), keep_as_view=True)
Out[48]:
array([[[[2, 2, 6],
[1, 0, 1]],
[[1, 3, 6],
[0, 0, 3]]],
[[[4, 0, 0],
[3, 2, 4]],
[[4, 1, 7],
[7, 2, 4]]],
[[[8, 0, 7],
[1, 5, 6]],
[[3, 4, 6],
[2, 1, 8]]]])
Verify view with keep_as_view=True
In [20]: np.shares_memory(a, extract_blocks(a, (2,3), keep_as_view=True))
Out[20]: True
Let's check out performance on a large array and verify the virtually free runtime claim as discussed earlier -
In [42]: a = np.random.rand(2000,3000)
In [43]: %timeit extract_blocks(a, (2,3), keep_as_view=True)
1000000 loops, best of 3: 801 ns per loop
In [44]: %timeit extract_blocks(a, (2,3), keep_as_view=False)
10 loops, best of 3: 29.1 ms per loop
Here's a rather cryptic numpy one-liner to generate your 3-d array, called result1 here:
In [60]: x
Out[60]:
array([[2, 1, 2, 2, 0, 2, 2, 1, 3, 2],
[3, 1, 2, 1, 0, 1, 2, 3, 1, 0],
[2, 0, 3, 1, 3, 2, 1, 0, 0, 0],
[0, 1, 3, 3, 2, 0, 3, 2, 0, 3],
[0, 1, 0, 3, 1, 3, 0, 0, 0, 2],
[1, 1, 2, 2, 3, 2, 1, 0, 0, 3],
[2, 1, 0, 3, 2, 2, 2, 2, 1, 2],
[0, 3, 3, 3, 1, 0, 2, 0, 2, 1]])
In [61]: result1 = x.reshape(x.shape[0]//2, 2, x.shape[1]//2, 2).swapaxes(1, 2).reshape(-1, 2, 2)
result1 is like a 1-d array of 2-d arrays:
In [68]: result1.shape
Out[68]: (20, 2, 2)
In [69]: result1[0]
Out[69]:
array([[2, 1],
[3, 1]])
In [70]: result1[1]
Out[70]:
array([[2, 2],
[2, 1]])
In [71]: result1[5]
Out[71]:
array([[2, 0],
[0, 1]])
In [72]: result1[-1]
Out[72]:
array([[1, 2],
[2, 1]])
(Sorry, I don't have time at the moment to give a detailed breakdown of how it works. Maybe later...)
Here's a less cryptic version that uses a nested list comprehension. In this case, result2 is a python list of 2-d numpy arrays:
In [73]: result2 = [x[2*j:2*j+2, 2*k:2*k+2] for j in range(x.shape[0]//2) for k in range(x.shape[1]//2)]
In [74]: result2[5]
Out[74]:
array([[2, 0],
[0, 1]])
In [75]: result2[-1]
Out[75]:
array([[1, 2],
[2, 1]])