What does Rhs refer to in a compiler error message about PartialEq? - iterator

I am trying to create a function that takes two iterators as as parameters and iterates over the items by reference. Each Iterator item should implement PartialEq.
My first attempt was:
fn compute<T: Iterator>(first: T, second: T, len: usize) -> usize
where
T::Item: std::cmp::PartialEq,
{
// ...
}
This compiles but iterates (as far as I understand) not by reference but by value and the compiler complains about a move when iterating.
My second attempt was something like:
fn compute<'a, T>(first: T, second: T, len: usize) -> usize
where
T: Iterator<Item = &'a std::cmp::PartialEq>,
{
//...
}
resulting in a compiler error:
error[E0393]: the type parameter `Rhs` must be explicitly specified
--> src/main.rs:3:28
|
3 | T: Iterator<Item = &'a std::cmp::PartialEq>,
| ^^^^^^^^^^^^^^^^^^^ missing reference to `Rhs`
|
= note: because of the default `Self` reference, type parameters must be specified on object types
What does the Rhs (Right hand side?) the compiler refers to here mean? Why do I need a reference to it? How do I pass a bounded reference-based Iterator into a function?

PartialEq is a trait that allows you to compare two values. Those two values do not have to be of the same type! The generic type Rhs is used to specify what type we are comparing with. By default, the value of Rhs is the same as the type that is being compared to:
pub trait PartialEq<Rhs = Self>
where
Rhs: ?Sized,
In this case, you are actually requesting that the iterator value be the trait object &PartialEq. As the error message states:
because of the default Self reference, type parameters must be specified on object types
We could specify it:
fn compute<'a, T>(first: T, second: T, len: usize) -> usize
where
T: Iterator<Item = &'a std::cmp::PartialEq<i32>>,
or
fn compute<'a, T: 'a>(first: T, second: T, len: usize) -> usize
where
T: Iterator<Item = &'a std::cmp::PartialEq<&'a T>>,
but iterates (as far as I understand) not by reference but by value
It's quite possible for it to iterate by reference. Remember that T is any type and that i32, &i32, and &mut i32 are all types. Your first example is the formulation of the signature I would use:
fn compute<T: Iterator>(first: T, second: T, len: usize) -> usize
where
T::Item: std::cmp::PartialEq,
{
42
}
fn main() {
let a = [1, 2, 3];
let b = [4, 5, 6];
compute(a.iter(), b.iter(), 1);
compute(a.iter(), b.iter(), 2);
compute(a.iter(), b.iter(), 3);
}

Related

Rust cannot index into a value of type 'datatype<{integer}, {integer}>`

I have the following:
impl<'a, K: Hash + Eq, V> Index<K> for &'a LFUCache<K, V> {
type Output = V;
fn index(&self, index: K) -> &Self::Output {
self.get(index).unwrap()
}
}
This compiles fine.
Now when I do:
let mut lfu = LFUCache::new(2);
lfu.set(1, 1);
lfu[1] == 1;
I get an error:
cannot index into a value of type `LFUCache<{integer}, {integer}>`
--> src/lib.rs:154:9
|
154 | lfu[1] == 1;
| ^^^^^^
How do I fix this?
A number without any suffix in rust has no specific int type, (it could be any of i8,i16,i32,u8, etc) so the rust compiler can't infer which one you want your cache to hold. There are three ways to fix this:
Explicitly specify when constructing it: LFUCache::<i32,i32>::new(2)
Explicitly specifying the type of the binding. let mut lfu: LFUCache<i32,i32> =
Explicitly specify the type of int you are inserting with a suffix:lfu[1i32] = 1i32;
I believe option 2 is the most idiomatic in your example.
Fixed it by making it: impl<'a, K:Hash+Eq, V> Index<K> for LFUCache<K, V> {...}

How do I use the Option::ok_or() method correctly?

I'm trying to understand how to use the question mark operator for error handling in Rust. I have this code:
fn main() -> Result<(), &'static str> {
let foo: i32 = Some("1")
.ok_or(Err("error 1"))?
.parse()
.or(Err("error 2"))?;
Ok(())
}
This code can not be compiled for some reason:
error[E0277]: the trait bound `&str: std::convert::From<std::result::Result<_, &str>>` is not satisfied
--> src/main.rs:2:20
|
2 | let foo: i32 = Some("1")
| ____________________^
3 | | .ok_or(Err("error 1"))?
| |_______________________________^ the trait `std::convert::From<std::result::Result<_, &str>>` is not implemented for `&str`
|
= note: required by `std::convert::From::from`
The Rust book has an example usage of the question mark operator:
use std::io;
use std::io::Read;
use std::fs::File;
fn read_username_from_file() -> Result<String, io::Error> {
let mut s = String::new();
File::open("hello.txt")?.read_to_string(&mut s)?;
Ok(s)
}
In my opinion, it doesn't differ much from my example in sense of handling errors. I cannot see a reason for my code to be invalid. If the From trait should be implemented for all kinds of Result why does the code from the Rust book work fine?
Unlike or, ok_or takes an E, not a full Result<T, E> (because it wouldn't have anything to do if passed an Ok). Just pass the error string directly:
fn main() -> Result<(), &'static str> {
let foo: i32 = Some("1")
.ok_or("error 1")?
.parse()
.or(Err("error 2"))?;
Ok(())
}
The reason the error message mentions the From trait is because ? implicitly uses From to convert the expression's error type into the return value's error type. If it worked, .ok_or(Err("error 1")) would return a value of Result<&'static str, Result<_, &'static str>> (_ could be almost anything, since Err doesn't specify). The ? operator attempts to find an implementation of From that would convert Result<_, &'static str> (the expression's error type) into &'static str (the return value's error type). Since no such From implementation exists, the compiler emits an error.

What's the appropriate way to return a reference to the value from a generic associated function?

Imagine a tiny map that stores 3 values, the first two for known keys. I'd like to implement an iterator for this map, but I'm running into lifetime issues. What's the appropriate way to return a reference to the value from a generic associated function (K::zero() in the example below)?
FYI, I own the trait, so I tried changing it to the new RFC195 associated const, which didn't help.
I've boiled down my problem to the following code:
extern crate num;
use num::*;
pub struct TinyMap<K: Num, V> {
v0: Option<V>, // value for K::zero()
v1: Option<V>, // value for K::one()
k2: K, // arbitrary K
v2: Option<V>, // value for k2
}
pub struct Iter<'a, K: 'a + Num, V: 'a> {
k0: K,
v0: &'a Option<V>,
v1: &'a Option<V>,
k2: &'a K,
v2: &'a Option<V>,
}
impl<K: Num, V> TinyMap<K, V> {
pub fn iter(&self) -> Iter<K, V> {
Iter {
k0: K::zero(),
v0: &self.v0,
v1: &self.v1,
k2: &self.k2,
v2: &self.v2,
}
}
}
impl<'a, K: 'a + Num, V: 'a> Iterator for Iter<'a, K, V> {
type Item = (&'a K, &'a V);
fn next(&mut self) -> Option<(&'a K, &'a V)> {
if (*self.v0).is_some() {
// code removed that remembers we did this once.
return Some((&self.k0, ((*self.v0).as_ref()).unwrap()));
}
// if (*self.v1).is_some() {
// code removed that remembers we did this once.
// return Some((&K::one(), &((*self.v1).unwrap())));
// }
None
}
}
error[E0495]: cannot infer an appropriate lifetime for borrow expression due to conflicting requirements
--> src/lib.rs:38:26
|
38 | return Some((&self.k0, ((*self.v0).as_ref()).unwrap()));
| ^^^^^^^^
|
note: first, the lifetime cannot outlive the anonymous lifetime #1 defined on the method body at 35:5...
--> src/lib.rs:35:5
|
35 | / fn next(&mut self) -> Option<(&'a K, &'a V)> {
36 | | if (*self.v0).is_some() {
37 | | // code removed that remembers we did this once.
38 | | return Some((&self.k0, ((*self.v0).as_ref()).unwrap()));
... |
44 | | None
45 | | }
| |_____^
note: ...so that reference does not outlive borrowed content
--> src/lib.rs:38:26
|
38 | return Some((&self.k0, ((*self.v0).as_ref()).unwrap()));
| ^^^^^^^^
note: but, the lifetime must be valid for the lifetime 'a as defined on the impl at 32:6...
--> src/lib.rs:32:6
|
32 | impl<'a, K: 'a + Num, V: 'a> Iterator for Iter<'a, K, V> {
| ^^
= note: ...so that the expression is assignable:
expected std::option::Option<(&'a K, &'a V)>
found std::option::Option<(&K, &V)>
It's not possible to do that with the Iterator trait, because of the lifetime of the self reference (which is elided away in your code, but can be explicitly written like this):
type Item = (&'a K, &'a V);
fn next<'s>(&'s mut self) -> Self::Item;
Since 's doesn't appear in the function's return value (and can't appear in there, because Self::Item can't use type parameters of the function), the output is not allowed to hold a reference to any of the iterator's member variables.
That's the mechanics of the mistake, now here's the why part:
Consider a function that does include a reference to a member of self, with all the lifetimes set up correctly:
struct SomeMember;
struct SomeObject {
some_member: SomeMember,
}
impl SomeObject {
fn some_function<'s>(&'s mut self) -> &'s SomeMember {
&self.some_member
}
}
The same way you're trying to return &self.k, but without any other things going on, and with the lifetimes fixed so that it's allowed. However, if I then try to do this:
fn main() {
let mut some_object = SomeObject{some_member: SomeMember};
let _item_1 = some_object.some_function();
let _item_2 = some_object.some_function();
}
error[E0499]: cannot borrow `some_object` as mutable more than once at a time
--> src/main.rs:15:23
|
14 | let _item_1 = some_object.some_function();
| ----------- first mutable borrow occurs here
15 | let _item_2 = some_object.some_function();
| ^^^^^^^^^^^ second mutable borrow occurs here
16 | }
| - first borrow ends here
The second call wasn't allowed, because it borrows some_object twice, mutably, a classic Rust no-no! But if I had tried to implement an iterator with an Item type that borrowed the iterator itself, then Iterator::collect() would be impossible, because it tries to pull more than one item out at once!
So, no, an iterator can't return an item that borrows its contents. That's an explicit, and intentional, part of the trait contract for iterators.
The consensus appears to be that as of this time (Rust 1.29), the only sensible way is to put K::zero() inside TinyMap. Thanks to #SvenMarnach for confirming my suspicions.

Implement a pairwise iterator

I have trouble writing code for a function that takes an iterator and returns an iterator that iterates in pairs (Option<T>, T) like so
a = [1,2,3]
assert pairwise(a) == `[(None, 1), (Some(1), 2), (Some(2), 3)]
fn pairwise<I, T>(&xs: &I) -> I
where
I: Iterator<Item = T>,
{
[None].iter().chain(xs.iter().map(Some)).zip(xs.iter())
}
fn main() {
let data: Vec<i32> = vec![1, 2, 3];
let newdata: Vec<Option<i32>, i32> = pairwise(&data).collect();
println!("{:?}", newdata);
}
error[E0599]: no method named `iter` found for type `I` in the current scope
--> src/main.rs:3:28
|
3 | [None].iter().chain(xs.iter().map(Some)).zip(xs.iter())
| ^^^^
|
Not sure why xs isn't iterable. I've stated it in the where clause haven't I?
fn pairwise<I, T>(&xs: &I) -> I
This doesn't make sense. See What is the correct way to return an Iterator (or any other trait)? and What is the difference between `e1` and `&e2` when used as the for-loop variable?.
I: Iterator<Item = T>,
There's no reason to specify that the Item is a T.
[None].iter()
It's better to use iter::once.
xs.iter()
There's no trait in the standard library that defines an iter method. Perhaps you meant IntoIterator?
let data: Vec<i32> = vec![1, 2, 3]
There's no reason to specify the type here; i32 is the default integral type.
Vec<Option<i32>, i32>
Vec<Option<i32>, i32>> // original version
This is not a valid type for Vec, and your original form doesn't even have balanced symbols.
After all that, you are faced with tough choices. Your example code passes in an iterator which has references to the slice but you've written your assertion such that you expect to get non-references back. You've also attempted to use an arbitrary iterator twice; there's no guarantee that such a thing is viable.
The most generic form I see is:
use std::iter;
fn pairwise<I>(right: I) -> impl Iterator<Item = (Option<I::Item>, I::Item)>
where
I: IntoIterator + Clone,
{
let left = iter::once(None).chain(right.clone().into_iter().map(Some));
left.zip(right)
}
fn main() {
let data = vec![1, 2, 3];
let newdata: Vec<_> = pairwise(&data).collect();
assert_eq!(newdata, [(None, &1), (Some(&1), &2), (Some(&2), &3)]);
let newdata: Vec<_> = pairwise(data.iter().copied()).collect();
assert_eq!(newdata, [(None, 1), (Some(1), 2), (Some(2), 3)]);
}
See also:
Iterating over a slice's values instead of references in Rust?
How to iterate over and filter an array?
How to create a non consuming iterator from a Vector
Why can I iterate over a slice twice, but not a vector?
The compiler suggests I add a 'static lifetime because the parameter type may not live long enough, but I don't think that's what I want
What is the correct way to return an Iterator (or any other trait)?
I know OP asked for "outer pairwise" ([(None, 1), (Some(1), 2), (Some(2), 3)]), but here is how I adapted it for "inner pairwise" ([(1, 2), (2, 3)]):
fn inner_pairwise<I>(right: I) -> impl Iterator<Item = (I::Item, I::Item)>
where
I: IntoIterator + Clone,
{
let left = right.clone().into_iter().skip(1);
left.zip(right)
}
For anyone here for "inner pairwise", you're looking for Itertools::tuple_windows.

Implementing a "cautious" take_while using Peekable

I'd like to use Peekable as the basis for a new cautious_take_while operation that acts like take_while from IteratorExt but without consuming the first failed item. (There's a side question of whether this is a good idea, and whether there are better ways to accomplish this goal in Rust -- I'd be happy for hints in that direction, but mostly I'm trying to understand where my code is breaking).
The API I'm trying to enable is basically:
let mut chars = "abcdefg.".chars().peekable();
let abc : String = chars.by_ref().cautious_take_while(|&x| x != 'd');
let defg : String = chars.by_ref().cautious_take_while(|&x| x != '.');
// yielding (abc = "abc", defg = "defg")
I've taken a crack at creating a MCVE here, but I'm getting:
:10:5: 10:19 error: cannot move out of borrowed content
:10 chars.by_ref().cautious_take_while(|&x| x != '.');
As far as I can tell, I'm following the same pattern as Rust's own TakeWhile in terms of my function signatures, but I'm seeing different different behavior from the borrow checker. Can someone point out what I'm doing wrong?
The funny thing with by_ref() is that it returns a mutable reference to itself:
pub trait IteratorExt: Iterator + Sized {
fn by_ref(&mut self) -> &mut Self { self }
}
It works because the Iterator trait is implemented for the mutable pointer to Iterator type. Smart!
impl<'a, I> Iterator for &'a mut I where I: Iterator, I: ?Sized { ... }
The standard take_while function works because it uses the trait Iterator, that is automatically resolved to &mut Peekable<T>.
But your code does not work because Peekable is a struct, not a trait, so your CautiousTakeWhileable must specify the type, and you are trying to take ownership of it, but you cannot, because you have a mutable pointer.
Solution, do not take a Peekable<T> but &mut Peekable<T>. You will need to specify the lifetime too:
impl <'a, T: Iterator, P> Iterator for CautiousTakeWhile<&'a mut Peekable<T>, P>
where P: FnMut(&T::Item) -> bool {
//...
}
impl <'a, T: Iterator> CautiousTakeWhileable for &'a mut Peekable<T> {
fn cautious_take_while<P>(self, f: P) -> CautiousTakeWhile<&'a mut Peekable<T>, P>
where P: FnMut(&T::Item) -> bool {
CautiousTakeWhile{inner: self, condition: f,}
}
}
A curious side effect of this solution is that now by_ref is not needed, because cautious_take_while() takes a mutable reference, so it does not steal ownership. The by_ref() call is needed for take_while() because it can take either Peekable<T> or &mut Peekable<T>, and it defaults to the first one. With the by_ref() call it will resolve to the second one.
And now that I finally understand it, I think it might be a good idea to change the definition of struct CautiousTakeWhile to include the peekable bit into the struct itself. The difficulty is that the lifetime has to be specified manually, if I'm right. Something like:
struct CautiousTakeWhile<'a, T: Iterator + 'a, P>
where T::Item : 'a {
inner: &'a mut Peekable<T>,
condition: P,
}
trait CautiousTakeWhileable<'a, T>: Iterator {
fn cautious_take_while<P>(self, P) -> CautiousTakeWhile<'a, T, P> where
P: FnMut(&Self::Item) -> bool;
}
and the rest is more or less straightforward.
This was a tricky one! I'll lead with the meat of the code, then attempt to explain it (if I understand it...). It's also the ugly, unsugared version, as I wanted to reduce incidental complexity.
use std::iter::Peekable;
fn main() {
let mut chars = "abcdefg.".chars().peekable();
let abc: String = CautiousTakeWhile{inner: chars.by_ref(), condition: |&x| x != 'd'}.collect();
let defg: String = CautiousTakeWhile{inner: chars.by_ref(), condition: |&x| x != '.'}.collect();
println!("{}, {}", abc, defg);
}
struct CautiousTakeWhile<'a, I, P> //'
where I::Item: 'a, //'
I: Iterator + 'a, //'
P: FnMut(&I::Item) -> bool,
{
inner: &'a mut Peekable<I>, //'
condition: P,
}
impl<'a, I, P> Iterator for CautiousTakeWhile<'a, I, P>
where I::Item: 'a, //'
I: Iterator + 'a, //'
P: FnMut(&I::Item) -> bool
{
type Item = I::Item;
fn next(&mut self) -> Option<I::Item> {
let return_next =
match self.inner.peek() {
Some(ref v) => (self.condition)(v),
_ => false,
};
if return_next { self.inner.next() } else { None }
}
}
Actually, Rodrigo seems to have a good explanation, so I'll defer to that, unless you'd like me to explain something specific.