Building deep learning from config file using Tensorflow - tensorflow

I would like to ask whether there is any method at hand to build deep learning models from config file using Tensorflow, just like that in caffe. Thank you very much.

The project caffe-tensorflow allows you to convert Caffe models to TensorFlow.

Related

Can't manage to open TensorFlow SavedModel for usage in Keras

I'm kinda new to TensorFlow and Keras, so please excuse any accidental stupidity, but I have an issue. I've been trying to load in models from the TensorFlow Detection Zoo, but haven't had much success.
I can't figure out how to read these saved_model folders (they contain a saved_model.pb file, and an assets and variables folder), so that they're accepted by Keras. Nor can I figure out a way to convert these models so that they may be loaded in. I've tried converting the SavedModel to ONNX, and then convert the ONNX-model to Keras, but that didn't work. Trying to load the original model as a saved_model, and then trying to to save this loaded model in another format gave me no success either.
Since you are new to Tensorflow (and I guess deep learning) I would suggest you stick with the API because the detection zoo models best interface with the object detection API. If you have already downloaded the model, you just need to export it using the exporter_main_v2.py script. This article explains it very well link.

Saving subclass model with custom training

I want to save custom model, build using tensorflow subclass. It is trained using custom training. (Not .fit() or .compile() method).
For example this tutorials -
https://www.tensorflow.org/tutorials/text/nmt_with_attention
https://www.tensorflow.org/tutorials/text/image_captioning
I didn't find the documentation for saving such models so as to convert it to tensorflow lite format and use it on android/ ios devices.
Thank you in advance.
I have searched a lot. please help me if you know the answer.

How to do fine tuning on TFlite model

I would like to fine tune a model on my own data. However the model is distributed by tflite format. Is there anyway to extract the model architecture and parameters out of the tflite file?
One approach could be to convert the TFLite file to another format, and import into a deep learning framework that supports training.
Something like ONNX, using tflite2onnx, and then import into a framework of your choice. Not all frameworks can import from ONNX (e.g. PyTorch). I believe you can train with ONNXRuntime, and MXNet. Unsure if you can train using TensorFlow.
I'm not sure to understand what you need. But if you want to know the exact architecture of your model you can use neutron to find out.
You will get something like the this :
And for your information TensorFlow Lite is not meant to be finetuned. You need to finetune a classic TensorFlow model and then convert it to TensorFlow Lite.

How to use a custom model with Tensorflow Hub?

My goal is to test out Google's BERT algorithm in Google Colab.
I'd like to use a pre-trained custom model for Finnish (https://github.com/TurkuNLP/FinBERT). The model can not be found on TFHub library. I have not found a way to load model with Tensorflow Hub.
Is there a neat way to load and use a custom model with Tensorflow Hub?
Fundamentally: yes. Everyone can create the kind of models that TF Hub hosts, and I hope authors of interesting models do consider that.
For TF1 and the hub.Module format tailored to it, see
https://www.tensorflow.org/hub/tf1_hub_module#creating_a_new_module
For TF2 and its revised SavedModel format, see
https://www.tensorflow.org/hub/tf2_saved_model#creating_savedmodels_for_tf_hub
That said, a sophisticated model like BERT requires a bit of attention to export it with all bells and whistles, so it helps to have some tooling to build on. The BERT reference implementation for TF2 at https://github.com/tensorflow/models/tree/master/official/nlp/bert comes with an open-sourced export_tfhub.py script, and anyone can use that to export custom BERT instances created from that code base.
However, I understand from https://github.com/TurkuNLP/FinBERT/blob/master/nlpl_tutorial/training_bert.md#general-info that you are using Nvidia's fork of the original TF1 implementation of BERT. There are Hub modules created from the original research code, but the tooling to that end has not been open-sourced, and Nvidia doesn't seem to have added their own either.
If that's not changing, you'll probably have to resort to doing things the pedestrian way and get acquainted with their codebase and load their checkpoints into it.

Converting TensorflowJS's BodyPix model to TensorFlow Lite

I have come across googles new BodyPix TensorflowJS model today, and I want to get it running on Android and iOS, but using TensorFlow Lite and CoreML. I was wondering if someone could point me towards the best way to convert this model into TensorFlow Lite. I have done conversions between TensorFlow Lite and CoreML so that's no problem.
I've read a few documents on how to do this, but im a little confused as those documents mention a model.json file or something similar, which the BodyPix src directory contains a multitude of files, which im unsure on what any of them do.
https://github.com/tensorflow/tfjs-models/tree/master/body-pix
Any help or pointers would be appreciated.