MXNET custom loss function and eval_metric - mxnet

How do I create a custom loss function in MXNET? For example, instead of computing cross-entropy loss for one label (using standard mx.sym.SoftmaxOutput layer which computes cross-entropy loss and returns a symbol that can be passed as a loss symbol to the fit function), I want to compute weighted cross-entropy loss for each possible label. The MXNET tutorials mention using
mx.symbol.MakeLoss(scalar_loss_symbol, normalization='batch')
However, when I use MakeLoss function, the standard eval_metric - "acc" does not work (obviously as the model doesn't know what is my predicted probability vector). Therefore I need to write my own eval_metric.
Further, at the time of prediction, I need to predict the probability vector as well, which cannot be accessed unless I group the final probability vector with the loss symbol and block_grad on it.

The code below is a modification of the MXNET tutorial http://mxnet.io/tutorials/python/mnist.html where the standard SoftmaxOutput loss function is rewritten for a custom weighted loss function and required custom eval_metric is written.
import logging
logging.getLogger().setLevel(logging.DEBUG)
import mxnet as mx
import numpy as np
mnist = mx.test_utils.get_mnist()
batch_size = 100
weighted_train_labels =
np.zeros((mnist['train_label'].shape[0],np.max(mnist['train_label'])+ 1))
weighted_train_labels[np.arange(mnist['train_label'].shape[0]),mnist['train_label']] = 1
train_iter = mx.io.NDArrayIter(mnist['train_data'], {'label':weighted_train_labels}, batch_size, shuffle=True)
weighted_test_labels = np.zeros((mnist['test_label'].shape[0],np.max(mnist['test_label'])+ 1))
weighted_test_labels[np.arange(mnist['test_label'].shape[0]),mnist['test_label']] = 1
val_iter = mx.io.NDArrayIter(mnist['test_data'], {'label':weighted_test_labels}, batch_size)
data = mx.sym.var('data')
# first conv layer
conv1 = mx.sym.Convolution(data=data, kernel=(5,5), num_filter=20)
tanh1 = mx.sym.Activation(data=conv1, act_type="tanh")
pool1 = mx.sym.Pooling(data=tanh1, pool_type="max", kernel=(2,2), stride=(2,2))
# second conv layer
conv2 = mx.sym.Convolution(data=pool1, kernel=(5,5), num_filter=50)
tanh2 = mx.sym.Activation(data=conv2, act_type="tanh")
pool2 = mx.sym.Pooling(data=tanh2, pool_type="max", kernel=(2,2), stride=(2,2))
# first fullc layer
flatten = mx.sym.flatten(data=pool2)
fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=500)
tanh3 = mx.sym.Activation(data=fc1, act_type="tanh")
# second fullc
fc2 = mx.sym.FullyConnected(data=tanh3, num_hidden=10)
# softmax loss
#lenet = mx.sym.SoftmaxOutput(data=fc2, name='softmax')
label = mx.sym.var('label')
softmax = mx.sym.log_softmax(data=fc2)
softmax_output = mx.sym.BlockGrad(data = softmax,name = 'softmax')
ce = ce = -mx.sym.sum(mx.sym.sum(mx.sym.broadcast_mul(softmax,label),1))
lenet = mx.symbol.MakeLoss(ce, normalization='batch')
sym = mx.sym.Group([softmax_output,lenet])
print sym.list_outputs
def custom_metric(label,softmax):
return len(np.where(np.argmax(softmax,1)==np.argmax(label,1))[0])/float(label.shape[0])
eval_metrics = mx.metric.CustomMetric(custom_metric,name='custom-accuracy', output_names=['softmax_output'],label_names=['label'])
lenet_model = mx.mod.Module(symbol=sym, context=mx.gpu(),data_names=['data'], label_names=['label'])
lenet_model.fit(train_iter,
eval_data=val_iter,
optimizer='sgd',
optimizer_params={'learning_rate':0.1},
eval_metric=eval_metrics,#mx.metric.Loss(),#'acc',
#batch_end_callback = mx.callback.Speedometer(batch_size, 100),
num_epoch=10)

Related

How do you fit a tf.Dataset to a Keras Autoencoder Model when the Dataset has been generated using TFX?

Problem
As the title suggests I have been trying to create a pipeline for training an Autoencoder model using TFX. The problem I'm having is fitting the tf.Dataset returned by the DataAccessor.tf_dataset_factory object to the Autoencoder.
Below I summarise the steps I've taken through this project, and have some Questions at the bottom if you wish to skip the background information.
Intro
TFX Pipeline
The TFX components I have used so far have been:
CsvExampleGenerator (the dataset has 82 columns, all numeric, and the sample csv has 739 rows)
StatisticsGenerator / SchemaGenerator, the schema has been edited as is now loaded in using an Importer
Transform
Trainer (this is the component I am currently having problems with)
Model
The model that I am attempting to train is based off of the example laid out here https://www.tensorflow.org/tutorials/generative/autoencoder. However, my model is being trained on tabular data, searching for anomalous results, as opposed to image data.
As I have tried a couple of solutions I have tried using both the Keras.layers and Keras.model format for defining the model and I outline both below:
Subclassing Keras.Model
class Autoencoder(keras.models.Model):
def __init__(self, features):
super(Autoencoder, self).__init__()
self.encoder = tf.keras.Sequential([
keras.layers.Dense(82, activation = 'relu'),
keras.layers.Dense(32, activation = 'relu'),
keras.layers.Dense(16, activation = 'relu'),
keras.layers.Dense(8, activation = 'relu')
])
self.decoder = tf.keras.Sequential([
keras.layers.Dense(16, activation = 'relu'),
keras.layers.Dense(32, activation = 'relu'),
keras.layers.Dense(len(features), activation = 'sigmoid')
])
def call(self, x):
inputs = [keras.layers.Input(shape = (1,), name = f) for f in features]
dense = keras.layers.concatenate(inputs)
encoded = self.encoder(dense)
decoded = self.decoder(encoded)
return decoded
Subclassing Keras.Layers
def _build_keras_model(features: List[str]) -> tf.keras.Model:
inputs = [keras.layers.Input(shape = (1,), name = f) for f in features]
dense = keras.layers.concatenate(inputs)
dense = keras.layers.Dense(32, activation = 'relu')(dense)
dense = keras.layers.Dense(16, activation = 'relu')(dense)
dense = keras.layers.Dense(8, activation = 'relu')(dense)
dense = keras.layers.Dense(16, activation = 'relu')(dense)
dense = keras.layers.Dense(32, activation = 'relu')(dense)
outputs = keras.layers.Dense(len(features), activation = 'sigmoid')(dense)
model = keras.Model(inputs = inputs, outputs = outputs)
model.compile(
optimizer = 'adam',
loss = 'mae'
)
return model
TFX Trainer Component
For creating the Trainer Component I have been mainly following the implementation details laid out here: https://www.tensorflow.org/tfx/guide/trainer
As well as following the default penguins example: https://www.tensorflow.org/tfx/tutorials/tfx/penguin_simple#write_model_training_code
run_fn defintion
def run_fn(fn_args: tfx.components.FnArgs) -> None:
tft_output = tft.TFTransformOutput(fn_args.transform_output)
train_dataset = _input_fn(
file_pattern = fn_args.train_files,
data_accessor = fn_args.data_accessor,
tf_transform_output = tft_output,
batch_size = fn_args.train_steps
)
eval_dataset = _input_fn(
file_pattern = fn_args.eval_files,
data_accessor = fn_args.data_accessor,
tf_transform_output = tft_output,
batch_size = fn_args.custom_config['eval_batch_size']
)
# model = Autoencoder(
# features = fn_args.custom_config['features']
# )
model = _build_keras_model(features = fn_args.custom_config['features'])
model.compile(optimizer = 'adam', loss = 'mse')
model.fit(
train_dataset,
steps_per_epoch = fn_args.train_steps,
validation_data = eval_dataset,
validation_steps = fn_args.eval_steps
)
...
_input_fn definition
def _apply_preprocessing(raw_features, tft_layer):
transformed_features = tft_layer(raw_features)
return transformed_features
def _input_fn(
file_pattern,
data_accessor: tfx.components.DataAccessor,
tf_transform_output: tft.TFTransformOutput,
batch_size: int) -> tf.data.Dataset:
"""
Generates features and label for tuning/training.
Args:
file_pattern: List of paths or patterns of input tfrecord files.
data_accessor: DataAccessor for converting input to RecordBatch.
tf_transform_output: A TFTransformOutput.
batch_size: representing the number of consecutive elements of returned
dataset to combine in a single batch
Returns:
A dataset that contains features where features is a
dictionary of Tensors.
"""
dataset = data_accessor.tf_dataset_factory(
file_pattern,
tfxio.TensorFlowDatasetOptions(batch_size = batch_size),
tf_transform_output.transformed_metadata.schema
)
transform_layer = tf_transform_output.transform_features_layer()
def apply_transform(raw_features):
return _apply_preprocessing(raw_features, transform_layer)
return dataset.map(apply_transform).repeat()
This differs from the _input_fn example given above as I was following the example in the next tfx tutorial found here: https://www.tensorflow.org/tfx/tutorials/tfx/penguin_tft#run_fn
Also for reference, there is no Target within the example data so there is no label_key to be passed to the tfxio.TensorFlowDatasetOptions object.
Error
When trying to run the Trainer component using a TFX InteractiveContext object I receive the following error.
ValueError: No gradients provided for any variable: ['dense_460/kernel:0', 'dense_460/bias:0', 'dense_461/kernel:0', 'dense_461/bias:0', 'dense_462/kernel:0', 'dense_462/bias:0', 'dense_463/kernel:0', 'dense_463/bias:0', 'dense_464/kernel:0', 'dense_464/bias:0', 'dense_465/kernel:0', 'dense_465/bias:0'].
From my own attempts to solve this I believe the problem lies in the way that an Autoencoder is trained. From the Autoencoder example linked here https://www.tensorflow.org/tutorials/generative/autoencoder the data is fitted like so:
autoencoder.fit(x_train, x_train,
epochs=10,
shuffle=True,
validation_data=(x_test, x_test))
therefore it stands to reason that the tf.Dataset should also mimic this behaviour and when testing with plain Tensor objects I have been able to recreate the error above and then solve it when adding the target to be the same as the training data in the .fit() function.
Things I've Tried So Far
Duplicating Train Dataset
model.fit(
train_dataset,
train_dataset,
steps_per_epoch = fn_args.train_steps,
validation_data = eval_dataset,
validation_steps = fn_args.eval_steps
)
Raises error due to Keras not accepting a 'y' value when a dataset is passed.
ValueError: `y` argument is not supported when using dataset as input.
Returning a dataset that is a tuple with itself
def _input_fn(...
dataset = data_accessor.tf_dataset_factory(
file_pattern,
tfxio.TensorFlowDatasetOptions(batch_size = batch_size),
tf_transform_output.transformed_metadata.schema
)
transform_layer = tf_transform_output.transform_features_layer()
def apply_transform(raw_features):
return _apply_preprocessing(raw_features, transform_layer)
dataset = dataset.map(apply_transform)
return dataset.map(lambda x: (x, x))
This raises an error where the keys from the features dictionary don't match the output of the model.
ValueError: Found unexpected keys that do not correspond to any Model output: dict_keys(['feature_string', ...]). Expected: ['dense_477']
At this point I switched to using the keras.model Autoencoder subclass and tried to add output keys to the Model using an output which I tried to create dynamically in the same way as the inputs.
def call(self, x):
inputs = [keras.layers.Input(shape = (1,), name = f) for f in x]
dense = keras.layers.concatenate(inputs)
encoded = self.encoder(dense)
decoded = self.decoder(encoded)
outputs = {}
for feature_name in x:
outputs[feature_name] = keras.layers.Dense(1, activation = 'sigmoid')(decoded)
return outputs
This raises the following error:
TypeError: Cannot convert a symbolic Keras input/output to a numpy array. This error may indicate that you're trying to pass a symbolic value to a NumPy call, which is not supported. Or, you may be trying to pass Keras symbolic inputs/outputs to a TF API that does not register dispatching, preventing Keras from automatically converting the API call to a lambda layer in the Functional Model.
I've been looking into solving this issue but am no longer sure if the data is being passed correctly and am beginning to think I'm getting side-tracked from the actual problem.
Questions
Has anyone managed to get an Autoencoder working when connected via TFX examples?
Did you alter the tf.Dataset or handled the examples in a different way to the _input_fn demonstrated?
So I managed to find an answer to this and wanted to leave what I found here in case anyone else stumbles onto a similar problem.
It turns out my feelings around the error were correct and the solution did indeed lie in how the tf.Dataset object was presented.
This can be demonstrated when I ran some code which simulated the incoming data using randomly generated tensors.
tensors = [tf.random.uniform(shape = (1, 82)) for i in range(739)]
# This gives us a list of 739 tensors which hold 1 value for 82 'features' simulating the dataset I had
dataset = tf.data.Dataset.from_tensor_slices(tensors)
dataset = dataset.map(lambda x : (x, x))
# This returns a dataset which marks the training set and target as the same
# which is what the Autoecnoder model is looking for
model.fit(dataset ...)
Following this I proceeded to do the same thing with the dataset returned by the _input_fn. Given that the tfx DataAccessor object returns a features_dict however I needed to combine the tensors in that dict together to create a single tensor.
This is how my _input_fn looks now:
def create_target_values(features_dict: Dict[str, tf.Tensor]) -> tuple:
value_tensor = tf.concat(list(features_dict.values()), axis = 1)
return (features_dict, value_tensor)
def _input_fn(
file_pattern,
data_accessor: tfx.components.DataAccessor,
tf_transform_output: tft.TFTransformOutput,
batch_size: int) -> tf.data.Dataset:
"""
Generates features and label for tuning/training.
Args:
file_pattern: List of paths or patterns of input tfrecord files.
data_accessor: DataAccessor for converting input to RecordBatch.
tf_transform_output: A TFTransformOutput.
batch_size: representing the number of consecutive elements of returned
dataset to combine in a single batch
Returns:
A dataset that contains (features, target_tensor) tuple where features is a
dictionary of Tensors, and target_tensor is a single Tensor that is a concatenated tensor of all the
feature values.
"""
dataset = data_accessor.tf_dataset_factory(
file_pattern,
tfxio.TensorFlowDatasetOptions(batch_size = batch_size),
tf_transform_output.transformed_metadata.schema
)
dataset = dataset.map(lambda x: create_target_values(features_dict = x))
return dataset.repeat()

How to apply Triplet Loss for a ResNet50 based Siamese Network in Keras or Tf 2

I have a ResNet based siamese network which uses the idea that you try to minimize the l-2 distance between 2 images and then apply a sigmoid so that it gives you {0:'same',1:'different'} output and based on how far the prediction is, you just flow the gradients back to network but there is a problem that updation of gradients is too little as we're changing the distance between {0,1} so I thought of using the same architecture but based on Triplet Loss.
I1 = Input(shape=image_shape)
I2 = Input(shape=image_shape)
res_m_1 = ResNet50(include_top=False, weights='imagenet', input_tensor=I1, pooling='avg')
res_m_2 = ResNet50(include_top=False, weights='imagenet', input_tensor=I2, pooling='avg')
x1 = res_m_1.output
x2 = res_m_2.output
# x = Flatten()(x) or use this one if not using any pooling layer
distance = Lambda( lambda tensors : K.abs( tensors[0] - tensors[1] )) ([x1,x2] )
final_output = Dense(1,activation='sigmoid')(distance)
siamese_model = Model(inputs=[I1,I2], outputs=final_output)
siamese_model.compile(loss='binary_crossentropy',optimizer=Adam(),metrics['acc'])
siamese_model.fit_generator(train_gen,steps_per_epoch=1000,epochs=10,validation_data=validation_data)
So how can I change it to use the Triplet Loss function? What adjustments should be done here in order to get this done? One change will be that I'll have to calculate
res_m_3 = ResNet50(include_top=False, weights='imagenet', input_tensor=I2, pooling='avg')
x3 = res_m_3.output
One thing found in tf docs is triplet-semi-hard-loss and is given as:
tfa.losses.TripletSemiHardLoss()
As shown in the paper, the best results are from triplets known as "Semi-Hard". These are defined as triplets where the negative is farther from the anchor than the positive, but still produces a positive loss. To efficiently find these triplets we utilize online learning and only train from the Semi-Hard examples in each batch.
Another implementation of Triplet Loss which I found on Kaggle is: Triplet Loss Keras
Which one should I use and most importantly, HOW?
P.S: People also use something like: x = Lambda(lambda x: K.l2_normalize(x,axis=1))(x) after model.output. Why is that? What is this doing?
Following this answer of mine, and with role of TripletSemiHardLoss in mind, we could do following:
import tensorflow as tf
import tensorflow_addons as tfa
import tensorflow_datasets as tfds
from tensorflow.keras import models, layers
BATCH_SIZE = 32
LATENT_DEM = 128
def _normalize_img(img, label):
img = tf.cast(img, tf.float32) / 255.
return (img, label)
train_dataset, test_dataset = tfds.load(name="mnist", split=['train', 'test'], as_supervised=True)
# Build your input pipelines
train_dataset = train_dataset.shuffle(1024).batch(BATCH_SIZE)
train_dataset = train_dataset.map(_normalize_img)
test_dataset = test_dataset.batch(BATCH_SIZE)
test_dataset = test_dataset.map(_normalize_img)
inputs = layers.Input(shape=(28, 28, 1))
resNet50 = tf.keras.applications.ResNet50(include_top=False, weights=None, input_tensor=inputs, pooling='avg')
outputs = layers.Dense(LATENT_DEM, activation=None)(resNet50.output) # No activation on final dense layer
outputs = layers.Lambda(lambda x: tf.math.l2_normalize(x, axis=1))(outputs) # L2 normalize embedding
siamese_model = models.Model(inputs=inputs, outputs=outputs)
# Compile the model
siamese_model.compile(
optimizer=tf.keras.optimizers.Adam(0.001),
loss=tfa.losses.TripletSemiHardLoss())
# Train the network
history = siamese_model.fit(
train_dataset,
epochs=3)

How to compute saliency map using keras backend

I am trying to construct a basic "vanilla gradient" saliency heatmap (gradient-based feature attribution) for MNIST using keras. I know there are libraries such as this one to compute saliency heatmaps, but I would like to construct this from scratch since the vanilla gradient approach seems conceptually straightforward to implement. I have trained the following digit classifier in Keras using functional model definition:
input = layers.Input(shape=(28,28,1), name='input')
conv2d_1 = layers.Conv2D(32, kernel_size=(3, 3), activation='relu')(input)
maxpooling2d_1 = layers.MaxPooling2D(pool_size=(2, 2), name='maxpooling2d_1')(conv2d_1)
conv2d_2 = layers.Conv2D(64, kernel_size=(3, 3), activation='relu')(maxpooling2d_1)
maxpooling2d_2 = layers.MaxPooling2D(pool_size=(2, 2))(conv2d_2)
flatten = layers.Flatten(name='flatten')(maxpooling2d_2)
dropout = layers.Dropout(0.5, name='dropout')(flatten)
dense = layers.Dense(num_classes, activation='softmax', name='dense')(dropout)
model = keras.models.Model(inputs=input, outputs=dense)
Now, I want to compute the saliency map for a single MNIST image. Since the final layer has a softmax activation and the denominator is a normalization term (so that the output nodes add up to 1), I believe that I need to either take the pre-softmax output or change the activation of the trained model linear for computing saliency maps. I will do the latter.
model.layers[-1].activation = tf.keras.activations.linear # swap activation to linear
input = loaded_model.layers[0].input
output = loaded_model.layers[-1].output
input_image = x_test[0] # shape is (28, 28, 1)
pred = np.argmax(loaded_model.predict(np.expand_dims(input_image, axis=0))) # predicted class
However, I am not sure what to do beyond this. I know I can use the following K.gradients(output, input) to compute gradients. That being said, I believe I should compute the gradient of the predicted class with respect to the input image, versus computing the gradient of the entire output. How would I do this? Also, I'm not sure how to evaluate the saliency heatmap for a specific image/prediction. I imagine I will have to use sess = tf.keras.backend.get_session() and sess.run(), but not sure exactly. I would greatly appreciate any help with completing the saliency heatmap code. Thanks!
If you add the activation as a single layer after the last dense layer with:
keras.layers.Activation('softmax')
you can do:
linear_model = keras.Model(input=model, output=model.layers[-2].output)
To then compute the gradients like:
def get_saliency_map(model, image, class_idx):
with tf.GradientTape() as tape:
tape.watch(image)
predictions = model(image)
loss = predictions[:, class_idx]
# Get the gradients of the loss w.r.t to the input image.
gradient = tape.gradient(loss, image)
# take maximum across channels
gradient = tf.reduce_max(gradient, axis=-1)
# convert to numpy
gradient = gradient.numpy()
# normaliz between 0 and 1
min_val, max_val = np.min(gradient), np.max(gradient)
smap = (gradient - min_val) / (max_val - min_val + keras.backend.epsilon())
return smap

Keras Loss Function with Additional Dynamic Parameter

I'm working on implementing prioritized experience replay for a deep-q network, and part of the specification is to multiply gradients by what's know as importance sampling (IS) weights. The gradient modification is discussed in section 3.4 of the following paper: https://arxiv.org/pdf/1511.05952.pdf I'm struggling with creating a custom loss function that takes in an array of IS weights in addition to y_true and y_pred.
Here's a simplified version of my model:
import numpy as np
import tensorflow as tf
# Input is RAM, each byte in the range of [0, 255].
in_obs = tf.keras.layers.Input(shape=(4,))
# Normalize the observation to the range of [0, 1].
norm = tf.keras.layers.Lambda(lambda x: x / 255.0)(in_obs)
# Hidden layers.
dense1 = tf.keras.layers.Dense(128, activation="relu")(norm)
dense2 = tf.keras.layers.Dense(128, activation="relu")(dense1)
dense3 = tf.keras.layers.Dense(128, activation="relu")(dense2)
dense4 = tf.keras.layers.Dense(128, activation="relu")(dense3)
# Output prediction, which is an action to take.
out_pred = tf.keras.layers.Dense(2, activation="linear")(dense4)
opt = tf.keras.optimizers.Adam(lr=5e-5)
network = tf.keras.models.Model(inputs=in_obs, outputs=out_pred)
network.compile(optimizer=opt, loss=huber_loss_mean_weighted)
Here's my custom loss function, which is just an implementation of Huber Loss multiplied by the IS weights:
'''
' Huber loss: https://en.wikipedia.org/wiki/Huber_loss
'''
def huber_loss(y_true, y_pred):
error = y_true - y_pred
cond = tf.keras.backend.abs(error) < 1.0
squared_loss = 0.5 * tf.keras.backend.square(error)
linear_loss = tf.keras.backend.abs(error) - 0.5
return tf.where(cond, squared_loss, linear_loss)
'''
' Importance Sampling weighted huber loss.
'''
def huber_loss_mean_weighted(y_true, y_pred, is_weights):
error = huber_loss(y_true, y_pred)
return tf.keras.backend.mean(error * is_weights)
The important bit is that is_weights is dynamic, i.e. it's different each time fit() is called. As such, I cannot simply close over is_weights as described here: Make a custom loss function in keras
I found this code online, which appears to use a Lambda layer to compute the loss: https://github.com/keras-team/keras/blob/master/examples/image_ocr.py#L475 It looks promising, but I'm struggling to understand it/adapt it to my particular problem. Any help is appreciated.
OK. Here is an example.
from keras.layers import Input, Dense, Conv2D, MaxPool2D, Flatten
from keras.models import Model
from keras.losses import categorical_crossentropy
def sample_loss( y_true, y_pred, is_weight ) :
return is_weight * categorical_crossentropy( y_true, y_pred )
x = Input(shape=(32,32,3), name='image_in')
y_true = Input( shape=(10,), name='y_true' )
is_weight = Input(shape=(1,), name='is_weight')
f = Conv2D(16,(3,3),padding='same')(x)
f = MaxPool2D((2,2),padding='same')(f)
f = Conv2D(32,(3,3),padding='same')(f)
f = MaxPool2D((2,2),padding='same')(f)
f = Conv2D(64,(3,3),padding='same')(f)
f = MaxPool2D((2,2),padding='same')(f)
f = Flatten()(f)
y_pred = Dense(10, activation='softmax', name='y_pred' )(f)
model = Model( inputs=[x, y_true, is_weight], outputs=y_pred, name='train_only' )
model.add_loss( sample_loss( y_true, y_pred, is_weight ) )
model.compile( loss=None, optimizer='sgd' )
print model.summary()
Note, since you've add loss through add_loss(), you don't have to do it through compile( loss=xxx ).
With regards to train a model, nothing is special except you move y_true to your input end. See below
import numpy as np
a = np.random.randn(8,32,32,3)
a_true = np.random.randn(8,10)
a_is_weight = np.random.randint(0,2,size=(8,1))
model.fit( [a, a_true, a_is_weight] )
Finally, you can make a testing model (which share all weights in model) for easier use, i.e.
test_model = Model( inputs=x, outputs=y_pred, name='test_only' )
a_pred = test_model.predict( a )

How to use tf.contrib.seq2seq.Helper for non-embedding data?

I'm trying to use tf.contrib.seq2seq module to do forecasting on some data (just float32 vectors) but all the examples I found using the seq2seq module from TensorFlow are used for translation and therefore embeddings.
I'm struggling to understand exactly what tf.contrib.seq2seq.Helper is doing for the Seq2Seq architecture and how I can use the CustomHelper in my case.
This is what I've done for now:
import tensorflow as tf
from tensorflow.python.layers import core as layers_core
input_seq_len = 15 # Sequence length as input
input_dim = 1 # Nb of features in input
output_seq_len = forecast_len = 20 # horizon length for forecasting
output_dim = 1 # nb of features to forecast
encoder_units = 200 # nb of units in each cell for the encoder
decoder_units = 200 # nb of units in each cell for the decoder
attention_units = 100
batch_size = 8
graph = tf.Graph()
with graph.as_default():
learning_ = tf.placeholder(tf.float32)
with tf.variable_scope('Seq2Seq'):
# Placeholder for encoder input
enc_input = tf.placeholder(tf.float32, [None, input_seq_len, input_dim])
# Placeholder for decoder output - Targets
target = tf.placeholder(tf.float32, [None, output_seq_len, output_dim])
### BUILD THE ENCODER
# Build RNN cell
encoder_cell = tf.nn.rnn_cell.BasicLSTMCell(encoder_units)
initial_state = encoder_cell.zero_state(batch_size, dtype=tf.float32)
# Run Dynamic RNN
# encoder_outputs: [batch_size, seq_size, num_units]
# encoder_state: [batch_size, num_units]
encoder_outputs, encoder_state = tf.nn.dynamic_rnn(encoder_cell, enc_input, initial_state=initial_state)
## Attention layer
attention_mechanism_bahdanau = tf.contrib.seq2seq.BahdanauAttention(
num_units = attention_units, # depth of query mechanism
memory = encoder_outputs, # hidden states to attend (output of RNN)
normalize=False, # normalize energy term
name='BahdanauAttention')
attention_mechanism_luong = tf.contrib.seq2seq.LuongAttention(
num_units = encoder_units,
memory = encoder_outputs,
scale=False,
name='LuongAttention'
)
### BUILD THE DECODER
# Simple Dense layer to project from rnn_dim to the desired output_dim
projection = layers_core.Dense(output_dim, use_bias=True, name="output_projection")
helper = tf.contrib.seq2seq.TrainingHelper(target, sequence_length=[output_seq_len for _ in range(batch_size)])
## This is where I don't really know what to do in my case, is this function changing my data into [ GO, data, END] ?
decoder_cell = tf.nn.rnn_cell.BasicLSTMCell(decoder_units)
attention_cell = tf.contrib.seq2seq.AttentionWrapper(
cell = decoder_cell,
attention_mechanism = attention_mechanism_luong, # Instance of AttentionMechanism
attention_layer_size = attention_units,
name="attention_wrapper")
initial_state = attention_cell.zero_state(batch_size=batch_size, dtype=tf.float32)
initial_state = initial_state.clone(cell_state=encoder_state)
decoder = tf.contrib.seq2seq.BasicDecoder(attention_cell, initial_state=initial_state, helper=helper, output_layer=projection)
outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder=decoder)
# Loss function:
loss = 0.5*tf.reduce_sum(tf.square(outputs[0] - target), -1)
loss = tf.reduce_mean(loss, 1)
loss = tf.reduce_mean(loss)
# Optimizer
optimizer = tf.train.AdamOptimizer(learning_).minimize(loss)
I understood that Training state and Inference state are quite different for the Seq2seq architecture but I don't know how to use the Helpers from the module in order to distinguish both.
I'm using this module because it's quite useful for Attention Layers.
How can I use the Helper in order to create a ['Go' , [input_sequence]] for the decoder ?