(De-)Convutional lstm autoencoder - error jumps - tensorflow
I'm trying to build a convolutional lstm autoencoder (that also predicts future and past) with Tensorflow, and it works to a certain degree, but the error sometimes jumps back up, so essentially, it never converges.
The model is as follows:
The encoder starts with a 64x64 frame from a 20 frame bouncing mnist video for each time step of the lstm. Every stacking layer of LSTM halfs it and increases the depth via 2x2 convolutions with a stride of 2. (so -->32x32x3 -->...--> 1x1x96)
On the other hand, the lstm performs 3x3 convolutions with a stride of 1 on its state. Both results are concatenated to form the new state. In the same way, the decoder uses transposed convolutions to go back to the original format. Then the squared error is calculated.
The error starts at around 2700 and it takes around 20 hours (geforce1060) to get down to ~1700. At which point the jumping back up (and it sometimes jumps back up to 2300 or even ridiculous values like 440300) happens often enough that I can't really get any lower. Also at that point, it can usually pinpoint where the number should be, but its too fuzzy to actually make out the digit...
I tried different learning rates and optimizers, so if anybody knows why that jumping happens, that'd make me happy :)
Here is a graph of the loss with epochs:
import tensorflow as tf
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
#based on code by loliverhennigh (Github)
class ConvCell(tf.contrib.rnn.RNNCell):
count = 0 #exists only to remove issues with variable scope
def __init__(self, shape, num_features, transpose = False):
self.shape = shape
self.num_features = num_features
self._state_is_tuple = True
self._transpose = transpose
ConvCell.count+=1
self.count = ConvCell.count
#property
def state_size(self):
return (tf.contrib.rnn.LSTMStateTuple(self.shape[0:4],self.shape[0:4]))
#property
def output_size(self):
return tf.TensorShape(self.shape[1:4])
#here comes to the actual conv lstm implementation, if transpose = true, it performs a deconvolution on the input
def __call__(self, inputs, state, scope=None):
with tf.variable_scope(scope or type(self).__name__+str(self.count)):
c, h = state
state_shape = h.shape
input_shape = inputs.shape
#filter variables and convolutions on data coming from the same cell, a time step previous
h_filters = tf.get_variable("h_filters",[3,3,state_shape[3],self.num_features])
h_filters_gates = tf.get_variable("h_filters_gates",[3,3,state_shape[3],3])
h_partial = tf.nn.conv2d(h,h_filters,[1,1,1,1],'SAME')
h_partial_gates = tf.nn.conv2d(h,h_filters_gates,[1,1,1,1],'SAME')
c_filters = tf.get_variable("c_filters",[3,3,state_shape[3],3])
c_partial = tf.nn.conv2d(c,c_filters,[1,1,1,1],'SAME')
#filters and convolutions/deconvolutions on data coming fromthe cell input
if self._transpose:
x_filters = tf.get_variable("x_filters",[2,2,self.num_features,input_shape[3]])
x_filters_gates = tf.get_variable("x_filters_gates",[2,2,3,input_shape[3]])
x_partial = tf.nn.conv2d_transpose(inputs,x_filters,[int(state_shape[0]),int(state_shape[1]),int(state_shape[2]),self.num_features],[1,2,2,1],'VALID')
x_partial_gates = tf.nn.conv2d_transpose(inputs,x_filters_gates,[int(state_shape[0]),int(state_shape[1]),int(state_shape[2]),3],[1,2,2,1],'VALID')
else:
x_filters = tf.get_variable("x_filters",[2,2,input_shape[3],self.num_features])
x_filters_gates = tf.get_variable("x_filters_gates",[2,2,input_shape[3],3])
x_partial = tf.nn.conv2d(inputs,x_filters,[1,2,2,1],'VALID')
x_partial_gates = tf.nn.conv2d(inputs,x_filters_gates,[1,2,2,1],'VALID')
#some more lstm gate business
gate_bias = tf.get_variable("gate_bias",[1,1,1,3])
h_bias = tf.get_variable("h_bias",[1,1,1,self.num_features*2])
gates = h_partial_gates + x_partial_gates + c_partial + gate_bias
i,f,o = tf.split(gates,3,axis=3)
#concatenate the units coming from the spacial and the temporal dimension to build a unified state
concat = tf.concat([h_partial,x_partial],3) + h_bias
new_c = tf.nn.relu(concat)*tf.sigmoid(i)+c*tf.sigmoid(f)
new_h = new_c * tf.sigmoid(o)
new_state = tf.contrib.rnn.LSTMStateTuple(new_c,new_h)
return new_h, new_state #its redundant, but thats how tensorflow likes it, apparently
#global variables
LEARNING_RATE = 0.005
ITERATIONS_PER_EPOCH = 80
BATCH_SIZE = 75
TEST = False #manual switch to go from training to testing
if TEST:
BATCH_SIZE = 1
inputs = tf.placeholder(tf.float32, (20, BATCH_SIZE, 64, 64,1))
shape0 = [BATCH_SIZE,64,64,2]
shape1 = [BATCH_SIZE,32,32,6]
shape2 = [BATCH_SIZE,16,16,12]
shape3 = [BATCH_SIZE,8,8,24]
shape4 = [BATCH_SIZE,4,4,48]
shape5 = [BATCH_SIZE,2,2,96]
shape6 = [BATCH_SIZE,1,1,192]
#apparently tf.multirnncell has very specific requirements for the initial states oO
initial_state1 = (tf.contrib.rnn.LSTMStateTuple(tf.zeros(shape1),tf.zeros(shape1)),tf.contrib.rnn.LSTMStateTuple(tf.zeros(shape2),tf.zeros(shape2)),tf.contrib.rnn.LSTMStateTuple(tf.zeros(shape3),tf.zeros(shape3)),tf.contrib.rnn.LSTMStateTuple(tf.zeros(shape4),tf.zeros(shape4)),tf.contrib.rnn.LSTMStateTuple(tf.zeros(shape5),tf.zeros(shape5)),tf.contrib.rnn.LSTMStateTuple(tf.zeros(shape6),tf.zeros(shape6)))
initial_state2 = (tf.contrib.rnn.LSTMStateTuple(tf.zeros(shape5),tf.zeros(shape5)),tf.contrib.rnn.LSTMStateTuple(tf.zeros(shape4),tf.zeros(shape4)),tf.contrib.rnn.LSTMStateTuple(tf.zeros(shape3),tf.zeros(shape3)),tf.contrib.rnn.LSTMStateTuple(tf.zeros(shape2),tf.zeros(shape2)),tf.contrib.rnn.LSTMStateTuple(tf.zeros(shape1),tf.zeros(shape1)),tf.contrib.rnn.LSTMStateTuple(tf.zeros(shape0),tf.zeros(shape0)))
#encoding part of the autoencoder graph
cell1 = ConvCell(shape1,3)
cell2 = ConvCell(shape2,6)
cell3 = ConvCell(shape3,12)
cell4 = ConvCell(shape4,24)
cell5 = ConvCell(shape5,48)
cell6 = ConvCell(shape6,96)
mcell = tf.contrib.rnn.MultiRNNCell([cell1,cell2,cell3,cell4,cell5,cell6])
rnn_outputs, rnn_states = tf.nn.dynamic_rnn(mcell, inputs[0:20,:,:,:],initial_state=initial_state1,dtype=tf.float32, time_major=True)
#decoding part of the autoencoder graph, forward block and backwards block
cell9a = ConvCell(shape5,48,transpose = True)
cell10a = ConvCell(shape4,24,transpose = True)
cell11a = ConvCell(shape3,12,transpose = True)
cell12a = ConvCell(shape2,6,transpose = True)
cell13a = ConvCell(shape1,3,transpose = True)
cell14a = ConvCell(shape0,1,transpose = True)
mcella = tf.contrib.rnn.MultiRNNCell([cell9a,cell10a,cell11a,cell12a,cell13a,cell14a])
cell9b = ConvCell(shape5,48,transpose = True)
cell10b = ConvCell(shape4,24,transpose = True)
cell11b= ConvCell(shape3,12,transpose = True)
cell12b = ConvCell(shape2,6,transpose = True)
cell13b = ConvCell(shape1,3,transpose = True)
cell14b = ConvCell(shape0,1,transpose = True)
mcellb = tf.contrib.rnn.MultiRNNCell([cell9b,cell10b,cell11b,cell12b,cell13b,cell14b])
def PredictionLayer(rnn_outputs,viewPoint = 11, reverse = False):
predLength = viewPoint-2 if reverse else 20-viewPoint #vision is the input for the decoder
vision = tf.concat([rnn_outputs[viewPoint-1:viewPoint,:,:,:],tf.zeros([predLength,BATCH_SIZE,1,1,192])],0)
if reverse:
rnn_outputs2, rnn_states = tf.nn.dynamic_rnn(mcellb, vision, initial_state = initial_state2, time_major=True)
else:
rnn_outputs2, rnn_states = tf.nn.dynamic_rnn(mcella, vision, initial_state = initial_state2, time_major=True)
mean = tf.reduce_mean(rnn_outputs2,4)
if TEST:
return mean
if reverse:
return tf.reduce_sum(tf.square(mean-inputs[viewPoint-2::-1,:,:,:,0]))
else:
return tf.reduce_sum(tf.square(mean-inputs[viewPoint-1:20,:,:,:,0]))
if TEST:
mean = tf.concat([PredictionLayer(rnn_outputs,11,True)[::-1,:,:,:],createPredictionLayer(rnn_outputs,11)],0)
else: #training part of the graph
error = tf.zeros([1])
for i in range(8,15): #range size of 7 or less works, 9 or more does not, no idea why
error += PredictionLayer(rnn_outputs, i)
error += PredictionLayer(rnn_outputs, i, True)
train_fn = tf.train.RMSPropOptimizer(learning_rate=LEARNING_RATE).minimize(error)
################################################################################
## TRAINING LOOP ##
################################################################################
#code based on siemanko/tf_lstm.py (Github)
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8)
saver = tf.train.Saver(restore_sequentially=True, allow_empty=True,)
session = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
session.run(tf.global_variables_initializer())
vids = np.load("mnist_test_seq.npy") #20/10000/64/64 , moving mnist dataset from http://www.cs.toronto.edu/~nitish/unsupervised_video/
vids = vids[:,0:6000,:,:] #training set
saver.restore(session,tf.train.latest_checkpoint('./conv_lstm_multiples_v2/'))
#saver.restore(session,'.\conv_lstm_multiples\iteration-74')
for epoch in range(1000):
if TEST:
break
epoch_error = 0
#randomize batches each epoch
vids = np.swapaxes(vids,0,1)
np.random.shuffle(vids)
vids = np.swapaxes(vids,0,1)
for i in range(ITERATIONS_PER_EPOCH):
#running the graph and feeding data
err,_ = session.run([error, train_fn], {inputs: np.expand_dims(vids[:,i*BATCH_SIZE:(i+1)*BATCH_SIZE,:,:],axis=4)})
print(err)
epoch_error += err
#training error each epoch and regular saving
epoch_error /= (ITERATIONS_PER_EPOCH*BATCH_SIZE*4096*20*7)
if (epoch+1) % 5 == 0:
saver.save(session,'.\conv_lstm_multiples_v2\iteration',global_step=epoch)
print("saved")
print("Epoch %d, train error: %f" % (epoch, epoch_error))
#testing
plt.ion()
f, axarr = plt.subplots(2)
vids = np.load("mnist_test_seq.npy")
for i in range(6000,10000):
img = session.run([mean], {inputs: np.expand_dims(vids[:,i:i+1,:,:],axis=4)})
for j in range(20):
axarr[0].imshow(img[0][j,0,:,:])
axarr[1].imshow(vids[j,i,:,:])
plt.show()
plt.pause(0.1)
Usually this happens when gradients' magnitude is very high at some point and causes your network parameters to change a lot. To verify that it is indeed the case, you can produce the same plot of gradient magnitudes and see if they jump right before the loss jump. Assuming this is the case, the classic approach is to use gradient clipping (or go all the way to natural gradient).
Related
Expected to see 3 array(s), but instead got the following list of 1 arrays:
I am trying to train a triple loss model using a fit_generator. it requires three input and no output. so i have a function that generates hard triplets. the output from the triplets generator has a shape of (3,5,279) which is 3 inputs(anchor,positive and negative) for 5 batches and a total of 279 features. When i run the fit_generator it throws this error that "the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 3 array(s), but instead got the following list of 1 arrays" meanwhile i have passed a list of three arrays. the code is below. it works when i use the fit, however, i want to always call the generator function to generate my triplets as my batches. thanks in advance..this has taken me three days def load_data(): path = "arrhythmia_data.txt" f = open( path, "r") data = [] #remove line breaker, comma separate and store in array for line in f: line = line.replace('\n','').replace('?','0') line = line.split(",") data.append(line) f.close() data = np.array(data).astype(np.float64) #print(data.shape) #create the class labels for input data Y_train = data[:,-1:] train = data[:,:-1] normaliser = preprocessing.MinMaxScaler() train = normaliser.fit_transform(train) val = train[320:,:] train = train[:320,:] #create one hot encoding of the class labels of the data and separate them into train and test data lb = LabelBinarizer() encode = lb.fit_transform(Y_train) nb_classes = int(len(encode[0])) #one_hot_labels = keras.utils.to_categorical(labels, num_classes=10) this could also be used for one hot encoding Y_val_e = encode[320:,:] Y_train_e = encode[:320,:] print(Y_train_e[0]) print(np.argmax(Y_train_e[0])) val_in = [] train_in = [] #grouping and sorting the input data based on label id or name for n in range(nb_classes): images_class_n = np.asarray([row for idx,row in enumerate(train) if np.argmax(Y_train_e[idx])==n]) train_in.append(images_class_n) images_class_n = np.asarray([row for idx,row in enumerate(val) if np.argmax(Y_val_e[idx])==n]) val_in.append(images_class_n) #print(train_in[0].shape) return train_in,val_in,Y_train_e,Y_val_e,nb_classes train_in,val,Y_train,Y_val,nb_classes = load_data() input_shape = (train_in[0].shape[1],) def build_network(input_shape , embeddingsize): ''' Define the neural network to learn image similarity Input : input_shape : shape of input images embeddingsize : vectorsize used to encode our picture ''' #in_ = Input(train.shape) net = Sequential() net.add(Dense(128, activation='relu', input_shape=input_shape)) net.add(Dense(128, activation='relu')) net.add(Dense(256, activation='relu')) net.add(Dense(4096, activation='sigmoid')) net.add(Dense(embeddingsize, activation= None)) #Force the encoding to live on the d-dimentional hypershpere net.add(Lambda(lambda x: K.l2_normalize(x,axis=-1))) return net class TripletLossLayer(Layer): def __init__(self, alpha, **kwargs): self.alpha = alpha super(TripletLossLayer, self).__init__(**kwargs) def triplet_loss(self, inputs): anchor, positive, negative = inputs p_dist = K.sum(K.square(anchor-positive), axis=-1) n_dist = K.sum(K.square(anchor-negative), axis=-1) return K.sum(K.maximum(p_dist - n_dist + self.alpha, 0), axis=0) def call(self, inputs): loss = self.triplet_loss(inputs) self.add_loss(loss) return loss def build_model(input_shape, network, margin=0.2): ''' Define the Keras Model for training Input : input_shape : shape of input images network : Neural network to train outputing embeddings margin : minimal distance between Anchor-Positive and Anchor-Negative for the lossfunction (alpha) ''' # Define the tensors for the three input images anchor_input = Input(input_shape, name="anchor_input") positive_input = Input(input_shape, name="positive_input") negative_input = Input(input_shape, name="negative_input") # Generate the encodings (feature vectors) for the three images encoded_a = network(anchor_input) encoded_p = network(positive_input) encoded_n = network(negative_input) #TripletLoss Layer loss_layer = TripletLossLayer(alpha=margin,name='triplet_loss_layer')([encoded_a,encoded_p,encoded_n]) # Connect the inputs with the outputs network_train = Model(inputs=[anchor_input,positive_input,negative_input],outputs=loss_layer) # return the model return network_train def get_batch_random(batch_size,s="train"): # initialize result triplets=[np.zeros((batch_size,m)) for i in range(3)] for i in range(batch_size): #Pick one random class for anchor anchor_class = np.random.randint(0, nb_classes) nb_sample_available_for_class_AP = X[anchor_class].shape[0] #Pick two different random pics for this class => A and P. You can use same anchor as P if there is one one element for anchor if nb_sample_available_for_class_AP<=1: continue [idx_A,idx_P] = np.random.choice(nb_sample_available_for_class_AP,size=2 ,replace=False) #Pick another class for N, different from anchor_class negative_class = (anchor_class + np.random.randint(1,nb_classes)) % nb_classes nb_sample_available_for_class_N = X[negative_class].shape[0] #Pick a random pic for this negative class => N idx_N = np.random.randint(0, nb_sample_available_for_class_N) triplets[0][i,:] = X[anchor_class][idx_A,:] triplets[1][i,:] = X[anchor_class][idx_P,:] triplets[2][i,:] = X[negative_class][idx_N,:] return np.array(triplets) def get_batch_hard(draw_batch_size,hard_batchs_size,norm_batchs_size,network,s="train"): if s == 'train': X = train_in else: X = val #m, features = X[0].shape #while True: #Step 1 : pick a random batch to study studybatch = get_batch_random(draw_batch_size,X) #Step 2 : compute the loss with current network : d(A,P)-d(A,N). The alpha parameter here is omited here since we want only to order them studybatchloss = np.zeros((draw_batch_size)) #Compute embeddings for anchors, positive and negatives A = network.predict(studybatch[0]) P = network.predict(studybatch[1]) N = network.predict(studybatch[2]) #Compute d(A,P)-d(A,N) studybatchloss = np.sum(np.square(A-P),axis=1) - np.sum(np.square(A-N),axis=1) #Sort by distance (high distance first) and take the selection = np.argsort(studybatchloss)[::-1][:hard_batchs_size] #Draw other random samples from the batch selection2 = np.random.choice(np.delete(np.arange(draw_batch_size),selection),norm_batchs_size,replace=False) selection = np.append(selection,selection2) triplets = [studybatch[0][selection,:], studybatch[1][selection,:],studybatch[2][selection,:]] triplets = triplets.reshape(triplets.shape[0],triplets.shape[1],triplets.shape[2]) yield triplets network = build_network(input_shape,embeddingsize=10) hard = get_batch_hard(5,4,1,network,s="train") network_train = build_model(input_shape,network) optimizer = Adam(lr = 0.00006) network_train.compile(loss=None,optimizer=optimizer) #this works #history = network_train.fit(hard,epochs=100,steps_per_epoch=1, verbose=2) history = network_train.fit_generator(hard,epochs=10,steps_per_epoch=16, verbose=2) # error:: the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 3 array(s), but instead got the following list of 1 arrays:
I think that's beacause in your generator you are yielding the 3 inputs array in one list, you need to yield the 3 arrays independently: triplet_1 = studybatch[0][selection,:] triplet_2 = studybatch[1][selection,:] triplet_3 = studybatch[2][selection,:] yield [triplet_1, triplet_2, triplet_3]
FailedPreconditionError: FailedPr...onError()
I have FailedPreconditionError when running sess. My network has two different parts, pretrained-network and new add in Recognition network. Pretrained model is used to extract features and the feature is used to train again for recognition. In my code, pre-trained model is loaded first. graph = tf.Graph() with graph.as_default(): input_data, input_labels, input_boxes = input_train_data.input_fn() input_boxes = tf.reshape(input_boxes,[input_boxes.shape[0]*2,-1])#convert from Nx8 to 2Nx4 # build model and loss net = Net(input_data, is_training = False) f_saver = tf.train.Saver(max_to_keep=1000, write_version=tf.train.SaverDef.V2, save_relative_paths=True) sess_config = tf.ConfigProto(log_device_placement = False, allow_soft_placement = True) if FLAGS.gpu_memory_fraction < 0: sess_config.gpu_options.allow_growth = True elif FLAGS.gpu_memory_fraction > 0: sess_config.gpu_options.per_process_gpu_memory_fraction = FLAGS.gpu_memory_fraction; session = tf.Session(graph=graph, config=sess_config) tf.logging.info('Initialize from: ' + config.train.init_checkpoint) f_saver.restore(session, config.train.init_checkpoint) f_saver restores the pre-trained model. Then feature conv5_3 is extracted and fed into Recognition network. conv5_3 = net.end_points['conv5_3'] with tf.variable_scope("Recognition"): global_step_rec = tf.Variable(0, name='global_step_rec', trainable=False) #Pass through recognition net r_net = regnet.ConstructRecNet(conv5_3) conv7_7 = r_net.end_points['pool7'] #implement ROI Pooling #input boxes be in x1, y1, x2, y2 h_fmap = tf.dtypes.cast(tf.shape(conv7_7)[1],tf.float32) w_fmap = tf.dtypes.cast(tf.shape(conv7_7)[2],tf.float32) #remap boxes at input images to feature mats #input_boxes = input_boxes / tf.constant([config.train.input_shape[0], config.train.input_shape[0],\ # config.train.input_shape[0], config.train.input_shape[0]], dtype=tf.float32)#Normalize with image size first remap_boxes=tf.matmul(input_boxes,tf.diag([w_fmap,h_fmap,w_fmap,h_fmap])) #put first column with image indexes rows = tf.expand_dims(tf.range(remap_boxes.shape[0]), 1)/2 add_index = tf.concat([tf.cast(rows,tf.float32),remap_boxes],-1) index = tf.not_equal(tf.reduce_sum(add_index[:,4:],axis=1),0) remap_boxes = tf.gather_nd(add_index,tf.where(index)) remap_boxes=tf.dtypes.cast(remap_boxes,tf.int32) prob = roi_pooling(conv7_7, remap_boxes, pool_height=1, pool_width=28) #Get features for CTC training prob = tf.transpose(prob, (1, 0, 2)) # prepare for CTC data_length = tf.fill([tf.shape(prob)[1]], tf.shape(prob)[0]) # input seq length, batch size ctc = tf.py_func(CTCUtils.compute_ctc_from_labels, [input_labels], [tf.int64, tf.int64, tf.int64]) ctc_labels = tf.to_int32(tf.SparseTensor(ctc[0], ctc[1], ctc[2])) predictions = tf.to_int32(tf.nn.ctc_beam_search_decoder(prob, data_length, merge_repeated=False, beam_width=10)[0][0]) tf.sparse_tensor_to_dense(predictions, default_value=-1, name='d_predictions') tf.reduce_mean(tf.edit_distance(predictions, ctc_labels, normalize=False), name='error_rate') loss = tf.reduce_mean(tf.compat.v1.nn.ctc_loss(inputs=prob, labels=ctc_labels, sequence_length=data_length, ctc_merge_repeated=True), name='loss') learning_rate = tf.train.piecewise_constant(global_step_rec, [150000, 200000],[config.train.learning_rate, 0.1 * config.train.learning_rate,0.01 * config.train.learning_rate]) opt_loss = tf.contrib.layers.optimize_loss(loss, global_step_rec, learning_rate, config.train.opt_type,config.train.grad_noise_scale, name='train_step') tf.global_variables_initializer() I can run sess till feature extraction conv5_3. But can't run those in Recognition and got error as FailedPreconditionError: FailedPr...onError(). What could be the problem? graph.finalize() with tf.variable_scope("Recognition"): for i in range(config.train.steps): input_data_, input_labels_, input_boxes_ = session.run([input_data, input_labels, input_boxes]) conv5_3_ = session.run([conv5_3]) #can run this line global_step_rec_ = session.run([global_step_rec]) # got FailedPreconditionError: FailedPr...onError() error at this line conv7_7_ = session.run([conv7_7]) h_fmap_ = session.run([h_fmap])
Now it works. Since my graph has two parts, I need to initialize separately. (1)First get all variables from pre-trained model to initialize with those from checkpoint. Then initialize with tf.train.Saver. (2)Then initialize the rest add-in layers using tf.global_variables_initializer() My code is as follow. #Initialization #Initialize pre-trained model first #Since we need to restore pre-trained model and initialize to respective variables in this current graph #(1)make a variable list for checkpoint #(2)initialize a saver for the variable list #(3)then restore #(1) def print_tensors_in_checkpoint_file(file_name, tensor_name, all_tensors): varlist=[] reader = pywrap_tensorflow.NewCheckpointReader(file_name) if all_tensors: var_to_shape_map = reader.get_variable_to_shape_map() for key in sorted(var_to_shape_map): print(key) varlist.append(key) return varlist varlist=print_tensors_in_checkpoint_file(file_name=config.train.init_checkpoint,all_tensors=True,tensor_name=None) #(2)prepare the list of variables by calling variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) #countcheckpt_vars=0 #for n in tf.get_default_graph().as_graph_def().node: # print(n.name) #for op in tf.get_default_graph().get_operations(): # print(str(op.name)) #for var in zip(variables): # countcheckpt_vars=countcheckpt_vars+1 #(3) loader = tf.train.Saver(variables[:46])#since I need to initialize only 46 variables from global variables tf.logging.info('Initialize from: ' + config.train.init_checkpoint) sess_config = tf.ConfigProto(log_device_placement = False, allow_soft_placement = True) if FLAGS.gpu_memory_fraction < 0: sess_config.gpu_options.allow_growth = True elif FLAGS.gpu_memory_fraction > 0: sess_config.gpu_options.per_process_gpu_memory_fraction = FLAGS.gpu_memory_fraction; session = tf.Session(graph=graph, config=sess_config) loader.restore(session, config.train.init_checkpoint) Then initialize the rest of variables init = tf.global_variables_initializer() session.run(init)
How to extract cell state from a LSTM at each timestep in Keras?
Is there a way in Keras to retrieve the cell state (i.e., c vector) of a LSTM layer at every timestep of a given input? It seems the return_state argument returns the last cell state after the computation is done, but I need also the intermediate ones. Also, I don't want to pass these cell states to the next layer, I only want to be able to access them. Preferably using TensorFlow as backend. Thanks
I was looking for a solution to this issue and after reading the guidance for creating your own custom RNN Cell in tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras/layers/AbstractRNNCell), I believe the following is the most concise and easy to read way of doing this for Tensorflow 2: import tensorflow as tf from tensorflow.keras.layers import LSTMCell class LSTMCellReturnCellState(LSTMCell): def call(self, inputs, states, training=None): real_inputs = inputs[:,:self.units] # decouple [h, c] outputs, [h,c] = super().call(real_inputs, states, training=training) return tf.concat([h, c], axis=1), [h,c] num_units = 512 test_input = tf.random.uniform([5,100,num_units]) rnn = tf.keras.layers.RNN(LSTMCellReturnCellState(num_units), return_sequences=True, return_state=True) whole_seq_output, final_memory_state, final_carry_state = rnn(test_input) print(whole_seq_output.shape) >>> (5,100,1024) # Hidden state sequence h_seq = whole_seq_output[:,:,:num_units] # (5,100,512) # Cell state sequence c_seq = whole_seq_output[:,:,num_units:] # (5,100,512) As mentioned in an above solution, you can see the advantage of this is that it can be easily wrapped into tf.keras.layers.RNN as a drop-in for the normal LSTMCell. Here is a Colab Notebook with the code running as expected for tensorflow==2.6.0
I know it's pretty late, I hope this can help. what you are asking, technically, is possible by modifying the LSTM-cell in call method. I modify it and make it return 4 dimension instead of 3 when you give return_sequences=True. Code from keras.layers.recurrent import _generate_dropout_mask class Mod_LSTMCELL(LSTMCell): def call(self, inputs, states, training=None): if 0 < self.dropout < 1 and self._dropout_mask is None: self._dropout_mask = _generate_dropout_mask( K.ones_like(inputs), self.dropout, training=training, count=4) if (0 < self.recurrent_dropout < 1 and self._recurrent_dropout_mask is None): self._recurrent_dropout_mask = _generate_dropout_mask( K.ones_like(states[0]), self.recurrent_dropout, training=training, count=4) # dropout matrices for input units dp_mask = self._dropout_mask # dropout matrices for recurrent units rec_dp_mask = self._recurrent_dropout_mask h_tm1 = states[0] # previous memory state c_tm1 = states[1] # previous carry state if self.implementation == 1: if 0 < self.dropout < 1.: inputs_i = inputs * dp_mask[0] inputs_f = inputs * dp_mask[1] inputs_c = inputs * dp_mask[2] inputs_o = inputs * dp_mask[3] else: inputs_i = inputs inputs_f = inputs inputs_c = inputs inputs_o = inputs x_i = K.dot(inputs_i, self.kernel_i) x_f = K.dot(inputs_f, self.kernel_f) x_c = K.dot(inputs_c, self.kernel_c) x_o = K.dot(inputs_o, self.kernel_o) if self.use_bias: x_i = K.bias_add(x_i, self.bias_i) x_f = K.bias_add(x_f, self.bias_f) x_c = K.bias_add(x_c, self.bias_c) x_o = K.bias_add(x_o, self.bias_o) if 0 < self.recurrent_dropout < 1.: h_tm1_i = h_tm1 * rec_dp_mask[0] h_tm1_f = h_tm1 * rec_dp_mask[1] h_tm1_c = h_tm1 * rec_dp_mask[2] h_tm1_o = h_tm1 * rec_dp_mask[3] else: h_tm1_i = h_tm1 h_tm1_f = h_tm1 h_tm1_c = h_tm1 h_tm1_o = h_tm1 i = self.recurrent_activation(x_i + K.dot(h_tm1_i, self.recurrent_kernel_i)) f = self.recurrent_activation(x_f + K.dot(h_tm1_f, self.recurrent_kernel_f)) c = f * c_tm1 + i * self.activation(x_c + K.dot(h_tm1_c, self.recurrent_kernel_c)) o = self.recurrent_activation(x_o + K.dot(h_tm1_o, self.recurrent_kernel_o)) else: if 0. < self.dropout < 1.: inputs *= dp_mask[0] z = K.dot(inputs, self.kernel) if 0. < self.recurrent_dropout < 1.: h_tm1 *= rec_dp_mask[0] z += K.dot(h_tm1, self.recurrent_kernel) if self.use_bias: z = K.bias_add(z, self.bias) z0 = z[:, :self.units] z1 = z[:, self.units: 2 * self.units] z2 = z[:, 2 * self.units: 3 * self.units] z3 = z[:, 3 * self.units:] i = self.recurrent_activation(z0) f = self.recurrent_activation(z1) c = f * c_tm1 + i * self.activation(z2) o = self.recurrent_activation(z3) h = o * self.activation(c) if 0 < self.dropout + self.recurrent_dropout: if training is None: h._uses_learning_phase = True return tf.expand_dims(tf.concat([h,c],axis=0),0), [h, c] Sample code # create a cell test = Mod_LSTMCELL(100) # Input timesteps=10, features=7 in1 = Input(shape=(10,7)) out1 = RNN(test, return_sequences=True)(in1) M = Model(inputs=[in1],outputs=[out1]) M.compile(keras.optimizers.Adam(),loss='mse') ans = M.predict(np.arange(7*10,dtype=np.float32).reshape(1, 10, 7)) print(ans.shape) # state_h print(ans[0,0,0,:]) # state_c print(ans[0,0,1,:])
First, this is not possible do with the tf.keras.layers.LSTM. You have to use LSTMCell instead or subclass LSTM. Second, there is no need to subclass LSTMCell to get the sequence of cell states. LSTMCell already returns a list of the hidden state (h) and cell state (c) everytime you call it. For those not familiar with LSTMCell, it takes in the current [h, c] tensors, and the input at the current timestep (it cannot take in a sequence of times) and returns the activations, and the updated [h,c]. Here is an example of showing how to use LSTMCell to process a sequence of timesteps and to return the accumulated cell states. # example inputs inputs = tf.convert_to_tensor(np.random.rand(3, 4), dtype='float32') # 3 timesteps, 4 features h_c = [tf.zeros((1,2)), tf.zeros((1,2))] # must initialize hidden/cell state for lstm cell h_c = tf.convert_to_tensor(h_c, dtype='float32') lstm = tf.keras.layers.LSTMCell(2) # example of how you accumulate cell state over repeated calls to LSTMCell inputs = tf.unstack(inputs, axis=0) c_states = [] for cur_inputs in inputs: out, h_c = lstm(tf.expand_dims(cur_inputs, axis=0), h_c) h, c = h_c c_states.append(c)
You can access the states of any RNN by setting return_sequences = True in the initializer. You can find more information about this parameter here.
How to use previous output and hidden states from LSTM for the attention mechanism?
I am currently trying to code the attention mechanism from this paper: "Effective Approaches to Attention-based Neural Machine Translation", Luong, Pham, Manning (2015). (I use global attention with the dot score). However, I am unsure on how to input the hidden and output states from the lstm decode. The issue is that the input of the lstm decoder at time t depends on quantities that I need to compute using the output and hidden states from t-1. Here is the relevant part of the code: with tf.variable_scope('data'): prob = tf.placeholder_with_default(1.0, shape=()) X_or = tf.placeholder(shape = [batch_size, timesteps_1, num_input], dtype = tf.float32, name = "input") X = tf.unstack(X_or, timesteps_1, 1) y = tf.placeholder(shape = [window_size,1], dtype = tf.float32, name = "label_annotation") logits = tf.zeros((1,1), tf.float32) with tf.variable_scope('lstm_cell_encoder'): rnn_layers = [tf.nn.rnn_cell.LSTMCell(size) for size in [hidden_size, hidden_size]] multi_rnn_cell = tf.nn.rnn_cell.MultiRNNCell(rnn_layers) lstm_outputs, lstm_state = tf.contrib.rnn.static_rnn(cell=multi_rnn_cell,inputs=X,dtype=tf.float32) concat_lstm_outputs = tf.stack(tf.squeeze(lstm_outputs)) last_encoder_state = lstm_state[-1] with tf.variable_scope('lstm_cell_decoder'): initial_input = tf.unstack(tf.zeros(shape=(1,1,hidden_size2))) rnn_decoder_cell = tf.nn.rnn_cell.LSTMCell(hidden_size, state_is_tuple = True) # Compute the hidden and output of h_1 for index in range(window_size): output_decoder, state_decoder = tf.nn.static_rnn(rnn_decoder_cell, initial_input, initial_state=last_encoder_state, dtype=tf.float32) # Compute the score for source output vector scores = tf.matmul(concat_lstm_outputs, tf.reshape(output_decoder[-1],(hidden_size,1))) attention_coef = tf.nn.softmax(scores) context_vector = tf.reduce_sum(tf.multiply(concat_lstm_outputs, tf.reshape(attention_coef, (window_size, 1))),0) context_vector = tf.reshape(context_vector, (1,hidden_size)) # compute the tilda hidden state \tilde{h}_t=tanh(W[c_t, h_t]+b_t) concat_context = tf.concat([context_vector, output_decoder[-1]], axis = 1) W_tilde = tf.Variable(tf.random_normal(shape = [hidden_size*2, hidden_size2], stddev = 0.1), name = "weights_tilde", trainable = True) b_tilde = tf.Variable(tf.zeros([1, hidden_size2]), name="bias_tilde", trainable = True) hidden_tilde = tf.nn.tanh(tf.matmul(concat_context, W_tilde)+b_tilde) # hidden_tilde is [1*64] # update for next time step initial_input = tf.unstack(tf.reshape(hidden_tilde, (1,1,hidden_size2))) last_encoder_state = state_decoder # predict the target W_target = tf.Variable(tf.random_normal(shape = [hidden_size2, 1], stddev = 0.1), name = "weights_target", trainable = True) logit = tf.matmul(hidden_tilde, W_target) logits = tf.concat([logits, logit], axis = 0) logits = logits[1:] The part inside the loop is what I am unsure of. Does tensorflow remember the computational graph when I overwrite the variable "initial_input" and "last_encoder_state"?
I think your model will be much simplified if you use tf.contrib.seq2seq.AttentionWrapper with one of implementations: BahdanauAttention or LuongAttention. This way it'll be possible to wire the attention vector on a cell level, so that cell output is already after attention applied. Example from the seq2seq tutorial: cell = LSTMCell(512) attention_mechanism = tf.contrib.seq2seq.LuongAttention(512, encoder_outputs) attn_cell = tf.contrib.seq2seq.AttentionWrapper(cell, attention_mechanism, attention_size=256) Note that this way you won't need a loop of window_size, because tf.nn.static_rnn or tf.nn.dynamic_rnn will instantiate the cells wrapped with attention. Regarding your question: you should distinguish python variables and tensorflow graph nodes: you can assign last_encoder_state to a different tensor, the original graph node won't change because of this. This is flexible, but can be also misleading in the result network - you might think that you connect an LSTM to one tensor, but it's actually the other. In general, you shouldn't do that.
If I don't want to train in batches and my state is a vector, what should my tensors have for a shape?
I'm trying to use tensorflow to solve a reinforced learning problem. I created an gym environment of my own. The state is a one dimensional array (size 224) and there are 170 actions to choose from (0...169). I do not want to train in batches. What I want is to make the most simple version of the RL problem running with tensorflow. My main problem is, i guess the dimensions. I would assume that TF would allow me to input the state as 1D tensor. But then I get an error when I want to calculate W*input=action. Dimensions error make it hard to know whats right. Also, examples on the web focus on training from images, in batches. In general, I started in this tutorial, but the state is encoded differently, which again makes it hard to follow (especially since I'm not really familiar with python). import gym import numpy as np import random import tensorflow as tf env = gym.make('MyOwnEnv-v0') n_state = 224 n_action = 170 sess = tf.InteractiveSession() # Implementing the network itself inputs1 = tf.placeholder(shape=[1,n_state],dtype=tf.float32) W = tf.Variable(tf.random_uniform([n_state,n_action],0,0.01)) Qout = tf.transpose(tf.matmul(inputs1,W)) predict = tf.reshape(tf.argmax(Qout,1), [n_action,1]) #Below we obtain the loss by taking the sum of squares difference between the target and prediction Q values. nextQ = tf.placeholder(shape=[n_action,1],dtype=tf.float32) loss = tf.reduce_sum(tf.square(nextQ - Qout)) trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1) updateModel = trainer.minimize(loss) # Training the network init = tf.global_variables_initializer() print("input: ", inputs1.get_shape() , "\nW: ", W.get_shape() , "\nQout: ", Qout.get_shape() , "\npredict:", predict.get_shape() , "\nnextQ: ", nextQ.get_shape() , "\nloss: ", loss.get_shape()) # Set learning parameters y = .99 e = 0.1 num_episodes = 2000 #create lists to contain total rewards and steps per episode jList = [] rList = [] with tf.Session() as sess: sess.run(init) for i in range(num_episodes): #Reset environment and get first new observation s = env.reset() rAll = 0 d = False j = 0 #The Q-Network while j < 99: j+=1 #Choose an action by greedily (with e chance of random action) from the Q-network a,allQ = sess.run([predict,Qout],feed_dict={inputs1:s}) if np.random.rand(1) < e: a = env.action_space.sample() #Get new state and reward from environment s1,r,d,_ = env.step(a) #Obtain the Q' values by feeding the new state through our network Q1 = sess.run(Qout,feed_dict={inputs1:s1}) #Obtain maxQ' and set our target value for chosen action. maxQ1 = np.max(Q1) targetQ = allQ #targetQ[0,a[0]] = r + y*maxQ1 targetQ[a,0] = r + y*maxQ1 #Train our network using target and predicted Q values _,W1 = sess.run([updateModel,W],feed_dict={inputs1:s,nextQ:targetQ}) rAll += r s = s1 if d == True: #Reduce chance of random action as we train the model. e = 1./((i/50) + 10) break jList.append(j) rList.append(rAll) print('Percent of succesful episodes: ' + str(sum(rList)/num_episodes) + '%')