Calling the same batch tensorflow - tensorflow

I have a tensorflow graph that is reading from .tfrecords files, as described in the process here (taken from Tflow docs):
def read_my_file_format(filename_queue):
reader = tf.SomeReader()
key, record_string = reader.read(filename_queue)
example, label = tf.some_decoder(record_string)
processed_example = some_processing(example)
return processed_example, label
def input_pipeline(filenames, batch_size, num_epochs=None):
filename_queue = tf.train.string_input_producer(
filenames, num_epochs=num_epochs, shuffle=True)
example, label = read_my_file_format(filename_queue)
# min_after_dequeue defines how big a buffer we will randomly sample
# from -- bigger means better shuffling but slower start up and more
# memory used.
# capacity must be larger than min_after_dequeue and the amount larger
# determines the maximum we will prefetch. Recommendation:
# min_after_dequeue + (num_threads + a small safety margin) * batch_size
min_after_dequeue = 10000
capacity = min_after_dequeue + 3 * batch_size
example_batch, label_batch = tf.train.shuffle_batch(
[example, label], batch_size=batch_size, capacity=capacity,
min_after_dequeue=min_after_dequeue)
return example_batch, label_batch`
In my code, a single batch (as returned by input_pipeline above) is used as an input to multiple networks (let's call them A,B) in my graph per iteration. So if I call:
#...define graph...
sess.run([A,B])
does tensorflow guarantee that it will use the same batch for each sess.run call?

If input of model A and B is example_batch and you evaluate the models simultaneously (as in your example sess.run([A,B])) then I expect to see the same batch. Because both models are fed by the same dequeuing operation. As soon as you break the synchronization (i.e., running separately) then inputs will be different.
The following code snippet looks trivial but shows my point.
import tensorflow as tf
import numpy as np
import time
batch_size = 16
input_shape, target_shape = (128), () # input with dimensionality 128.
num_threads = 4 # for input pipeline
queue_capacity = 10 # for input pipeline
def get_random_data_sample():
# Random inputs and targets
np_input = np.float32(np.random.normal(0,1, input_shape))
np_target = np.int32(1)
# Sleep randomly between 1 and 3 seconds.
#time.sleep(np.random.randint(1,3,1)[0])
return np_input, np_target
tensorflow_input, tensorflow_target = tf.py_func(get_random_data_sample, [], [tf.float32, tf.int32])
def create_model(inputs, hidden_size, num_hidden_layers):
# Create a dummy dense network.
dense_layer = inputs
for i in range(num_hidden_layers):
dense_layer = tf.layers.dense(
inputs=dense_layer,
units=hidden_size,
kernel_initializer= tf.zeros_initializer(),
bias_initializer= tf.zeros_initializer(),
activation=None,
use_bias=True,
reuse=False)
return dense_layer, inputs
# input pipeline
batch_inputs, batch_targets = tf.train.batch([tensorflow_input, tensorflow_target],
batch_size=batch_size,
num_threads=num_threads,
shapes=[input_shape, target_shape],
capacity=queue_capacity)
# Different models A and B using the same input operation.
modelA, modelA_inputs = create_model(batch_inputs, 32, 1) # 1 hidden layer
modelB, modelB_inputs = create_model(batch_inputs, 64, 2) # 2 hidden layers
sess = tf.InteractiveSession()
tf.train.start_queue_runners()
sess.run(tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()))
sess = tf.InteractiveSession()
tf.train.start_queue_runners()
sess.run(tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()))
# (1) Evaluate the models simultaneously.
resultA, resultB, inputsA, inputsB = sess.run([modelA, modelB, modelA_inputs, modelB_inputs])
assert((inputsA == inputsB).all())
# (2) Evaluate the models separately.
resultA2, inputsA2 = sess.run([modelA, modelA_inputs])
resultB2, inputsB2 = sess.run([modelB, modelB_inputs])
assert((inputsA2 == inputsB2).all())
Naturally the second evaluation uses different input batches and fails assertion. I hope this helps.

Related

Why am I getting "ValueError: No gradients provided for any variable: ['Variable:0']." error?

I'm extremely new to tensorflow, and I'm trying to build a style transfer model, I understand the concept of how the model is but am having difficulty at actually implementing it, since I don't fully understand what is going on in tensorflow, yet. When I try to run the optimization for the generated image I get the "No gradients provided" error, which I don't understand since my code has:
loss = total_loss(content_feats, style_feats, output_feats)
grad = tape.gradient(loss, output_processado)
optimizer.apply_gradients(zip([grad],[output_processado]))
ValueError Traceback (most recent call
last)
in ()
8
9 grad = tape.gradient(loss, output_processado)
---> 10 optimizer.apply_gradients(zip([grad],[output_processado]))
11
12 clip = tf.clip_by_value(output_processado, min_value, max_value)
1 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py in _filter_grads(grads_and_vars) 1217 if not filtered: 1218
raise ValueError("No gradients provided for any variable: %s." %
-> 1219 ([v.name for _, v in grads_and_vars],)) 1220 if vars_with_empty_grads: 1221 logging.warning(
ValueError: No gradients provided for any variable: ['Variable:0'].
import tensorflow as tf
device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:0':
raise SystemError('GPU device not found')
print('Found GPU at: {}'.format(device_name))
import numpy as np
from PIL import Image
import requests
from io import BytesIO
from keras.applications.vgg19 import VGG19
from keras.applications.vgg19 import preprocess_input
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.models import Model
import keras.backend as K
from matplotlib import pyplot as plt
from numpy import expand_dims
from tensorflow import GradientTape
ITERATIONS = 10
CHANNELS = 3
IMAGE_SIZE = 500
IMAGE_WIDTH = IMAGE_SIZE
IMAGE_HEIGHT = IMAGE_SIZE
CONTENT_WEIGHT = 0.02
STYLE_WEIGHT = 4.5
MEAN = np.array([103.939, 116.779, 123.68])
CONTENT_LAYERS = ['block4_conv2']
STYLE_LAYERS = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1']
input_image_path = "input.png"
style_image_path = "style.png"
output_image_path = "output.png"
combined_image_path = "combined.png"
san_francisco_image_path = "https://www.economist.com/sites/default/files/images/print-edition/20180602_USP001_0.jpg"
tytus_image_path = "http://meetingbenches.com/wp-content/flagallery/tytus-brzozowski-polish-architect-and-watercolorist-a-fairy-tale-in-warsaw/tytus_brzozowski_13.jpg"
input_image = Image.open(BytesIO(requests.get(san_francisco_image_path).content))
input_image = input_image.resize((IMAGE_WIDTH, IMAGE_HEIGHT))
input_image.save(input_image_path)
#input_image
# Style visualization
style_image = Image.open(BytesIO(requests.get(tytus_image_path).content))
style_image = style_image.resize((IMAGE_WIDTH, IMAGE_HEIGHT))
style_image.save(style_image_path)
#style_image
def obter_modelo():
modelo = VGG19(include_top = False, weights = 'imagenet', input_tensor = None)
c_layer = CONTENT_LAYERS
s_layers = STYLE_LAYERS
output_layers = [modelo.get_layer(layer).output for layer in (c_layer + s_layers)]
return Model(modelo.inputs, output_layers)
def processar_imagem(img):
imagem = img.resize((IMAGE_HEIGHT, IMAGE_WIDTH))
imagem = img_to_array(imagem)
imagem = preprocess_input(imagem)
imagem = expand_dims(imagem, axis=0)
return imagem
def desprocessar_imagem(img):
imagem = img
mean = MEAN
imagem[..., 0] += mean[0]
imagem[..., 1] += mean[1]
imagem[..., 2] += mean[2]
imagem = imagem[..., ::-1]
return imagem.astype(int)
def content_loss(c_mat, out_mat):
return 0.5 * K.sum(K.square(out_mat - c_mat))
def matriz_gram(mat):
return K.dot(mat,K.transpose(mat))
def style_loss(s_mat, out_mat):
style_feat = K.batch_flatten(K.permute_dimensions(s_mat,(2,0,1)))
output_feat = K.batch_flatten(K.permute_dimensions(out_mat,(2,0,1)))
style_gram = matriz_gram(style_feat)
output_gram = matriz_gram(output_feat)
return K.sum(K.square(style_gram - output_gram)) / (4.0 * (CHANNELS ** 2) * (IMAGE_SIZE ** 2))
def total_loss(c_layer, s_layers, out_layers):
content_layer = c_layer[0]
out_content = out_layers[0]
style_layers = s_layers[1:]
out_style = out_layers[1:]
c_loss = content_loss(content_layer[0], out_content[0])
s_loss = None
for i in range(len(style_layers)):
if s_loss is None:
s_loss = style_loss(style_layers[i][0], out_style[i][0])
else:
s_loss += style_loss(style_layers[i][0], out_style[i][0])
return CONTENT_WEIGHT * c_loss + (STYLE_WEIGHT * s_loss)/len(style_layers)
modelo = obter_modelo()
#content image
content_processado = processar_imagem(input_image)
content_feats = modelo(K.variable(content_processado))
#style image
style_processado = processar_imagem(style_image)
style_feats = modelo(K.variable(style_processado))
#output image
output_processado = preprocess_input(np.random.uniform(0,250,(IMAGE_HEIGHT, IMAGE_WIDTH,CHANNELS)))
output_processado = expand_dims(output_processado, axis=0)
output_processado = K.variable(output_processado)
optimizer = tf.optimizers.Adam(5,beta_1=.99,epsilon=1e-3)
epochs=200
melhor_loss = K.variable(2000000.0)
melhor_imagem = None
min_value = MEAN
max_value = 255 + MEAN
loss = K.variable(0.0)
for e in range(epochs):
with tf.GradientTape() as tape:
tape.watch(output_processado)
output_feats = modelo(output_processado)
loss = total_loss(content_feats, style_feats, output_feats)
grad = tape.gradient(loss, output_processado)
optimizer.apply_gradients(zip([grad],[output_processado]))
clip = tf.clip_by_value(output_processado, min_value, max_value)
output_processado.assign(clip)
print("Epoch: " + str(e) )
For tape.gradient, you have to pass (loss, model.trainable_weights), but you are passing tape.gradient(loss, output_processado). Also for optimizer.apply_gradients, you have to pass (grad, model.trainable_variables), but you are passing (zip([grad],[output_processado]).
Calling a model inside a GradientTape scope enables you to retrieve the gradients of the trainable weights of the layer with respect to a loss value. Using an optimizer instance, you can use these gradients to update these variables (which you can retrieve using model.trainable_weights).
TensorFlow provides the tf.GradientTape API for automatic differentiation - computing the gradient of a computation with respect to its input variables. Tensorflow "records" all operations executed inside the context of a tf.GradientTape onto a "tape". Tensorflow then uses that tape and the gradients associated with each recorded operation to compute the gradients of a "recorded" computation using reverse mode differentiation.
If you want to process the gradients before applying them you can instead use the optimizer in three steps:
Compute the gradients with tf.GradientTape.
Process the gradients as you wish.
Apply the processed gradients with apply_gradients().
Here is a simple example for mnist data. The comments are present in the code to explain better.
Code-
import tensorflow as tf
print(tf.__version__)
from tensorflow import keras
from tensorflow.keras import layers
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# Preprocess the data (these are Numpy arrays)
x_train = x_train.reshape(60000, 784).astype('float32') / 255
x_test = x_test.reshape(10000, 784).astype('float32') / 255
y_train = y_train.astype('float32')
y_test = y_test.astype('float32')
# Reserve 10,000 samples for validation
x_val = x_train[-10000:]
y_val = y_train[-10000:]
x_train = x_train[:-10000]
y_train = y_train[:-10000]
# Get the model.
inputs = keras.Input(shape=(784,), name='digits')
x = layers.Dense(64, activation='relu', name='dense_1')(inputs)
x = layers.Dense(64, activation='relu', name='dense_2')(x)
outputs = layers.Dense(10, name='predictions')(x)
model = keras.Model(inputs=inputs, outputs=outputs)
# Instantiate an optimizer.
optimizer = keras.optimizers.SGD(learning_rate=1e-3)
# Instantiate a loss function.
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
# Prepare the training dataset.
batch_size = 64
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(batch_size)
epochs = 3
for epoch in range(epochs):
print('Start of epoch %d' % (epoch,))
# Iterate over the batches of the dataset.
for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
# Open a GradientTape to record the operations run
# during the forward pass, which enables autodifferentiation.
with tf.GradientTape() as tape:
# Run the forward pass of the layer.
# The operations that the layer applies
# to its inputs are going to be recorded
# on the GradientTape.
logits = model(x_batch_train, training=True) # Logits for this minibatch
# Compute the loss value for this minibatch.
loss_value = loss_fn(y_batch_train, logits)
# Use the gradient tape to automatically retrieve
# the gradients of the trainable variables with respect to the loss.
grads = tape.gradient(loss_value, model.trainable_weights)
# Run one step of gradient descent by updating
# the value of the variables to minimize the loss.
optimizer.apply_gradients(zip(grads, model.trainable_weights))
# Log every 200 batches.
if step % 200 == 0:
print('Training loss (for one batch) at step %s: %s' % (step, float(loss_value)))
print('Seen so far: %s samples' % ((step + 1) * 64))
Output -
2.2.0
Start of epoch 0
Training loss (for one batch) at step 0: 2.323657512664795
Seen so far: 64 samples
Training loss (for one batch) at step 200: 2.3156163692474365
Seen so far: 12864 samples
Training loss (for one batch) at step 400: 2.2302279472351074
Seen so far: 25664 samples
Training loss (for one batch) at step 600: 2.131979465484619
Seen so far: 38464 samples
Start of epoch 1
Training loss (for one batch) at step 0: 2.00234317779541
Seen so far: 64 samples
Training loss (for one batch) at step 200: 1.7992427349090576
Seen so far: 12864 samples
Training loss (for one batch) at step 400: 1.8583933115005493
Seen so far: 25664 samples
Training loss (for one batch) at step 600: 1.6005337238311768
Seen so far: 38464 samples
Start of epoch 2
Training loss (for one batch) at step 0: 1.6701987981796265
Seen so far: 64 samples
Training loss (for one batch) at step 200: 1.6237502098083496
Seen so far: 12864 samples
Training loss (for one batch) at step 400: 1.3603084087371826
Seen so far: 25664 samples
Training loss (for one batch) at step 600: 1.246948480606079
Seen so far: 38464 samples
You can find more about tf.GradientTape here. The example used here is taken from here.
Hope this answers your question. Happy Learning.

CNN Training in Keras freezes

I am training a CNN model in Keras (Tensorflow backend). I have used on the fly augmentation with fit_generator(). The model takes images aa input and is supposed to predict the steering angle for a self driving car. The training just freezes after this point. I have tried changing the batch size, learning rate etc, but it doesn't work.
The training freezes at the end of first epoch.
Please help!
[BATCH_SIZE=32
INPUT_IMAGE_ROWS=160
INPUT_IMAGE_COLS=320
INPUT_IMAGE_CHANNELS=3
AUGMENTATION_NUM_BINS=200
NUM_EPOCHS=3
AUGMENTATION_BIN_MAX_PERC=0.5
AUGMENTATION_FACTOR=3
import csv
import cv2
import numpy as np
from random import shuffle
from sklearn.model_selection import train_test_split
import keras
from keras.callbacks import Callback
import math
from keras.preprocessing.image import *
print("\nLoading the dataset from file ...")
def load_dataset(file_path):
dataset = \[\]
with open(file_path) as csvfile:
reader = csv.reader(csvfile)
for line in reader:
try:
dataset.append({'center':line\[0\], 'left':line\[1\], 'right':line\[2\], 'steering':float(line\[3\]),
'throttle':float(line\[4\]), 'brake':float(line\[5\]), 'speed':float(line\[6\])})
except:
continue # some images throw error during loading
return dataset
dataset = load_dataset('C:\\Users\\kiit1\\Documents\\steering angle prediction\\dataset_coldivision\\data\\driving_log.csv')
print("Loaded {} samples from file {}".format(len(dataset),'C:\\Users\\kiit1\\Documents\\steering angle prediction\\dataset_coldivision\\data\\driving_log.csv'))
print("Partioning the dataset:")
shuffle(dataset)
#partitioning data into 80% training, 19% validation and 1% testing
X_train,X_validation=train_test_split(dataset,test_size=0.2)
X_validation,X_test=train_test_split(X_validation,test_size=0.05)
print("X_train has {} elements.".format(len(X_train)))
print("X_validation has {} elements.".format(len(X_validation)))
print("X_test has {} elements.".format(len(X_test)))
print("Partitioning the dataset complete.")
def generate_batch_data(dataset, batch_size = 32):
global augmented_steering_angles
global epoch_steering_count
global epoch_bin_hits
batch_images = np.zeros((batch_size, INPUT_IMAGE_ROWS, INPUT_IMAGE_COLS, INPUT_IMAGE_CHANNELS))
batch_steering_angles = np.zeros(batch_size)
while 1:
for batch_index in range(batch_size):
# select a random image from the dataset
image_index = np.random.randint(len(dataset))
image_data = dataset\[image_index\]
while 1:
try:
image, steering_angle = load_and_augment_image(image_data)
except:
continue
bin_idx = int (steering_angle * AUGMENTATION_NUM_BINS / 2)
if( epoch_bin_hits\[bin_idx\] < epoch_steering_count/AUGMENTATION_NUM_BINS*AUGMENTATION_BIN_MAX_PERC
or epoch_steering_count<500 ):
batch_images\[batch_index\] = image
batch_steering_angles\[batch_index\] = steering_angle
augmented_steering_angles.append(steering_angle)
epoch_bin_hits\[bin_idx\] = epoch_bin_hits\[bin_idx\] + 1
epoch_steering_count = epoch_steering_count + 1
break
yield batch_images, batch_steering_angles
print("\nTraining the model ...")
class LifecycleCallback(keras.callbacks.Callback):
def on_epoch_begin(self, epoch, logs={}):
pass
def on_epoch_end(self, epoch, logs={}):
global epoch_steering_count
global epoch_bin_hits
global bin_range
epoch_steering_count = 0
epoch_bin_hits = {k:0 for k in range(-bin_range, bin_range)}
def on_batch_begin(self, batch, logs={}):
pass
def on_batch_end(self, batch, logs={}):
self.losses.append(logs.get('loss'))
def on_train_begin(self, logs={}):
print('Beginning training')
self.losses = \[\]
def on_train_end(self, logs={}):
print('Ending training')
# Compute the correct number of samples per epoch based on batch size
def compute_samples_per_epoch(array_size, batch_size):
num_batches = array_size / batch_size
samples_per_epoch = math.ceil(num_batches)
samples_per_epoch = samples_per_epoch * batch_size
return samples_per_epoch
def load_and_augment_image(image_data, side_camera_offset=0.2):
# select a value between 0 and 2 to swith between center, left and right image
index = np.random.randint(3)
if (index==0):
image_file = image_data\['left'\].strip()
angle_offset = side_camera_offset
elif (index==1):
image_file = image_data\['center'\].strip()
angle_offset = 0.
elif (index==2):
image_file = image_data\['right'\].strip()
angle_offset = - side_camera_offset
steering_angle = image_data\['steering'\] + angle_offset
image = cv2.imread(image_file)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# apply a misture of several augumentation methods
image, steering_angle = random_transform(image, steering_angle)
return image, steering_angle
augmented_steering_angles = \[\]
epoch_steering_count = 0
bin_range = int(AUGMENTATION_NUM_BINS / 4 * 3)
epoch_bin_hits = {k:0 for k in range(-bin_range, bin_range)}
#flips image about y-axis
def horizontal_flip(image,steering_angle):
flipped_image=cv2.flip(image,1);
steering_angle=-steering_angle
return flipped_image,steering_angle
def translate(image,steering_angle,width_shift_range=50.0,height_shift_range=5.0):
tx = width_shift_range * np.random.uniform() - width_shift_range / 2
ty = height_shift_range * np.random.uniform() - height_shift_range / 2
# new steering angle
steering_angle += tx / width_shift_range * 2 * 0.2
transformed_matrix=np.float32(\[\[1,0,tx\],\[0,1,ty\]\])
rows,cols=(image.shape\[0\],image.shape\[1\])
translated_image=cv2.warpAffine(image,transformed_matrix,(cols,rows))
return translated_image,steering_angle
def brightness(image,bright_increase=None):
if(image.shape\[2\]>1):
image_hsv=cv2.cvtColor(image,cv2.COLOR_RGB2HSV)
else:
image_hsv=image
if bright_increase:
image_hsv\[:,:,2\] += bright_increase
else:
bright_increase = int(30 * np.random.uniform(-0.3,1))
image_hsv\[:,:,2\] = image\[:,:,2\] + bright_increase
image = cv2.cvtColor(image_hsv, cv2.COLOR_HSV2RGB)
return image
def rotation(image,rotation_range=5):
image=random_rotation(image,rotation_range);
return image
# Shift range for each channels
def channel_shift(image, intensity=30, channel_axis=2):
image = random_channel_shift(image, intensity, channel_axis)
return image
# Crop and resize the image
def crop_resize_image(image, cols=INPUT_IMAGE_COLS, rows=INPUT_IMAGE_ROWS, top_crop_perc=0.1, bottom_crop_perc=0.2):
height = image.shape\[0\]
width= image.shape\[1\]
# crop top and bottom
top_rows = int(height*top_crop_perc)
bottom_rows = int(height*bottom_crop_perc)
image = image\[top_rows:height-bottom_rows, 0:width\]
# resize to the final sizes even the aspect ratio is destroyed
image = cv2.resize(image, (cols, rows), interpolation=cv2.INTER_LINEAR)
return image
# Apply a sequence of random tranformations for a better generalization and to prevent overfitting
def random_transform(image, steering_angle):
# all further transformations are done on the smaller image to reduce the processing time
image = crop_resize_image(image)
# every second image is flipped horizontally
if np.random.random() < 0.5:
image, steering_angle = horizontal_flip(image, steering_angle)
image, steering_angle = translate(image, steering_angle)
image = rotation(image)
image = brightness(image)
image = channel_shift(image)
return img_to_array(image), steering_angle
from keras.models import Sequential, Model
from keras.layers.core import Lambda, Dense, Activation, Flatten, Dropout
from keras.layers.convolutional import Cropping2D, Convolution2D
from keras.layers.advanced_activations import ELU
from keras.layers.noise import GaussianNoise
from keras.optimizers import Adam
print("\nBuilding and compiling the model ...")
model = Sequential()
model.add(Lambda(lambda x: (x / 127.5) - 1.0, input_shape=(INPUT_IMAGE_ROWS, INPUT_IMAGE_COLS, INPUT_IMAGE_CHANNELS)))
# Conv Layer1 of 16 filters having size(8, 8) with strides (4,4)
model.add(Convolution2D(16, 8, 8, subsample=(4, 4), border_mode="same"))
model.add(ELU())
# Conv Layer1 of 32 filters having size(5, 5) with strides (2,2)
model.add(Convolution2D(32, 5, 5, subsample=(2, 2), border_mode="same"))
model.add(ELU())
# Conv Layer1 of 64 filters having size(5, 5) with strides (2,2)
model.add(Convolution2D(64, 5, 5, subsample=(2, 2), border_mode="same"))
model.add(Flatten())
model.add(Dropout(.5))
model.add(ELU())
model.add(Dense(512))
model.add(Dropout(.5))
model.add(ELU())
model.add(Dense(1))
model.summary()
adam = Adam(lr=0.0001)
model.compile(loss='mse', optimizer=adam)
lifecycle_callback = LifecycleCallback()
train_generator = generate_batch_data(X_train, BATCH_SIZE)
validation_generator = generate_batch_data(X_validation, BATCH_SIZE)
samples_per_epoch = compute_samples_per_epoch((len(X_train)*AUGMENTATION_FACTOR), BATCH_SIZE)
nb_val_samples = compute_samples_per_epoch((len(X_validation)*AUGMENTATION_FACTOR), BATCH_SIZE)
history = model.fit_generator(train_generator,
validation_data = validation_generator,
samples_per_epoch = ((len(X_train) // BATCH_SIZE ) * BATCH_SIZE) * 2,
nb_val_samples = ((len(X_validation) // BATCH_SIZE ) * BATCH_SIZE) * 2,
nb_epoch = NUM_EPOCHS, verbose=1,
)
print("\nTraining the model ended.")][1]
You have a weird structure for the data generator and that is most likely causing this issue, though I cannot be completely sure.
You structure is as follows:
while 1:
....
for _ in range(batch_size):
randomly select an image # this is inefficient, see below for comments
while 1:
process image
if epoch is not done:
collect images in a list
break
yield ...
Now,
Do not choose images randomly at each iteration. Instead shuffle your dataset once at the starting of each epoch and then choose sequentially.
As far as I understood, if epoch is not done, then break is a typo. Did you mean if epoch is not done then collect images, otherwise break? Your break is inside the if which means when it enters if for the first time, it will come out of the innermost while 1 loop. Surely not what you intend to do, right?
The yield is outside the for loop. You should yield each batch, so if for is iterating over batches, then yield should be inside for.
The structure of a basic data generator should be:
while 1:
shuffle entire dataset once # not applicable for massive datasets
for _ in range(n_batches_per_epoch):
get a data batch
Optionally, do some preprocessing # preferably on the entire batch,
not one by one, you could also preprocess the entire dataset if its simple
enough, such as mean subtraction.
yield batches, labels
I would suggest you to again write the data generator. You could see the myGenerator() function on this page for a basic data generator. Once you write the generator, then test it as a stand-alone function to make sure it outputs the data indefinitely and keeps the track of epochs.
In short, it is hard to say which part is problematic, maybe data, maybe a model, or something else. So please be patient, and you will resolve the issue eventually.
First of all, you can train a baseLine model without data augmentation. If your data augmentation is helpful, you shall expect performance improvement after applying data augmentation to the new augmLine model.
If baseLine behaves similarly to augmLine, you may consider changing your network design. For example, in your current design, 1) Conv2D layers without any activation are very rare, and you may want to use relu or tanh, and 2) ELU(alpha) is known to be sensitive to the alpha value.
If baseLine actually works fine, this is an indicator that your augmLine's data is problematic. To ensure the correctness of the augmented data, you'd better plot both image data and target values and manually verify them. One common mistake for image data augmentation is that if the target values depend on the input image, then you have to generate new target values according to the augmented image. Sometimes this task is not trivial.
Note, to have a fair comparison, you need to keep validation data unchanged for both experiments.

L2 regularization keep increasing during training

I am finetuning InceptionResnetV2 on TensorFlow. When training, the regularization loss keep linearly increasing and even much larger than cross entropy loss in the later stage of training. I have checked the training procedure, and make sure I am optimizing the cross entropy loss and L2 loss combined.
Is there anyone explain this weird thing a little bit? Any feedback is appreciated.
Here is the code and some TensorBoard plots.
import tensorflow as tf
from tensorflow.python.platform import tf_logging as logging
from inception_resnet_v2 import inception_resnet_v2, inception_resnet_v2_arg_scope
import os
import time
from preprocessing import aug_parallel_v2
import numpy as np
slim = tf.contrib.slim
# total training data number
sample_num = 625020
data_path = 'iNaturalist_train.tfrecords'
# State where your log file is at. If it doesn't exist, create it.
log_dir = './log_v5'
# tensorboard visualization path
filewriter_path = './filewriter_v5_Logits'
# State where your checkpoint file is
checkpoint_file = './inception_resnet_v2_2016_08_30.ckpt'
checkpoint_save_addr = './log_v5/fine-tuning_v5.ckpt'
# State the image size you're resizing your images to. We will use the default inception size of 299.
image_size = 299
# State the number of classes to predict:
num_classes = 8142
# ================= TRAINING INFORMATION ==================
# State the number of epochs to train
num_epochs = 5
# State your batch size
batch_size = 60
# Learning rate information and configuration
initial_learning_rate = 0.0005
learning_rate_decay_factor = 0.8
num_epochs_before_decay = 2
# put weight on different classes inversely proportional
# to total number of their image samples
label_count = np.loadtxt('label_count.txt', dtype=int)
inverse = lambda t: 1 / t
vfunc = np.vectorize(inverse)
multiplier = vfunc(label_count)
multiplier /= np.mean(multiplier)
def run():
if not os.path.exists(log_dir):
os.mkdir(log_dir)
feature = {'train/height': tf.FixedLenFeature([], tf.int64),
'train/width': tf.FixedLenFeature([], tf.int64),
'train/image': tf.FixedLenFeature([], tf.string),
'train/label': tf.FixedLenFeature([], tf.int64),
'train/sup_label': tf.FixedLenFeature([], tf.int64),
'train/aug_level': tf.FixedLenFeature([], tf.int64)}
# create a list of file names
filename_queue = tf.train.string_input_producer([data_path], num_epochs=None)
print(filename_queue)
reader = tf.TFRecordReader()
_, tfrecord_serialized = reader.read(filename_queue)
features = tf.parse_single_example(tfrecord_serialized, features=feature)
# Convert the image data from string back to the numbers
height = tf.cast(features['train/height'], tf.int64)
width = tf.cast(features['train/width'], tf.int64)
# change this line for your TFrecord version
tf_image = tf.image.decode_jpeg(features['train/image'])
tf_label = tf.cast(features['train/label'], tf.int32)
aug_level = tf.cast(features['train/aug_level'], tf.int32)
# tf_sup_label = tf.cast(features['train/sup_label'], tf.int64)
tf_image = tf.reshape(tf_image, tf.stack([height, width, 3]))
tf_label = tf.reshape(tf_label, [1])
aug_level = tf.reshape(aug_level, [1])
resized_image = tf.image.resize_images(images=tf_image, size=tf.constant([400, 400]), method=2)
resized_image = tf.cast(resized_image, tf.uint8)
tf_images, tf_labels, tf_aug = tf.train.shuffle_batch([resized_image, tf_label, aug_level], batch_size=batch_size,
capacity=2048, num_threads=16, allow_smaller_final_batch=False,
min_after_dequeue=256)
tf.logging.set_verbosity(tf.logging.INFO) # Set the verbosity to INFO level
IMAGE_HEIGHT = 299
IMAGE_WIDTH = 299
images = tf.placeholder(dtype=tf.float32, shape=[None, 299, 299, 3])
labels = tf.placeholder(dtype=tf.int32, shape=[None, 1])
weighted_level = tf.placeholder(dtype=tf.float32, shape=[None, 1])
# Know the number steps to take before decaying the learning rate and batches per epoch
num_batches_per_epoch = int(sample_num / batch_size)
num_steps_per_epoch = num_batches_per_epoch # Because one step is one batch processed
decay_steps = int(num_epochs_before_decay * num_steps_per_epoch)
# Create the model inference
with slim.arg_scope(inception_resnet_v2_arg_scope()):
logits, end_points = inception_resnet_v2(images, num_classes=num_classes, is_training=True)
# Define the scopes that you want to exclude for restoration
exclude = ['InceptionResnetV2/Logits', 'InceptionResnetV2/AuxLogits']
variables_to_restore = slim.get_variables_to_restore(exclude=exclude)
print("label test")
print(labels)
print(logits)
# Perform one-hot-encoding of the labels (Try one-hot-encoding within the load_batch function!)
one_hot_labels = tf.squeeze(tf.one_hot(labels, num_classes), [1])
print(one_hot_labels)
print(logits)
weighted_onehot = tf.multiply(one_hot_labels, weighted_level)
# Performs the equivalent to tf.nn.sparse_softmax_cross_entropy_with_logits but enhanced with checks
digits_loss = tf.losses.softmax_cross_entropy(onehot_labels=weighted_onehot, logits=logits)
reg_loss = tf.losses.get_regularization_loss()
total_loss = digits_loss + reg_loss
# Define your exponentially decaying learning rate
lr = tf.train.exponential_decay(
learning_rate=initial_learning_rate,
global_step=global_step,
decay_steps=decay_steps,
decay_rate=learning_rate_decay_factor,
staircase=True)
# train_vars = []
# Now we can define the optimizer that takes on the learning rate
train_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
"InceptionResnetV2/Logits")
# RMSProp or Adam
optimizer = tf.train.AdamOptimizer(learning_rate=lr)
# Create the train_op.
train_op = slim.learning.create_train_op(total_loss, optimizer, variables_to_train=train_vars)
predictions = tf.argmax(end_points['Predictions'], 1)
probabilities = end_points['Predictions']
accuracy, accuracy_update = tf.metrics.accuracy(predictions, labels)
metrics_op = tf.group(accuracy_update, probabilities)
tf.summary.scalar('losses/Reg_Loss', reg_loss)
tf.summary.scalar('losses/Digit_Loss', digits_loss)
tf.summary.scalar('losses/Total_Loss', total_loss)
tf.summary.scalar('accuracy', accuracy)
tf.summary.scalar('learning_rate', lr)
writer = tf.summary.FileWriter(filewriter_path)
writer.add_graph(tf.get_default_graph())
my_summary_op = tf.summary.merge_all()
def train_step(sess, train_op, global_step, imgs, lbls, weight):
'''
Simply runs a session for the three arguments provided and gives a logging on the time elapsed
for each global step
'''
# Check the time for each sess run
start_time = time.time()
total_loss, global_step_count, _ = sess.run([train_op, global_step, metrics_op],
feed_dict={images: imgs, labels: lbls, weighted_level: weight})
time_elapsed = time.time() - start_time
# Run the logging to print some results
logging.info('global step %s: digit_loss: %.4f (%.2f sec/step)',
global_step_count, total_loss, time_elapsed)
return total_loss, global_step_count
saver_pretrain = tf.train.Saver(variables_to_restore)
saver_train = tf.train.Saver(train_vars)
with tf.Session() as sess:
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)
# Create a coordinator and run all QueueRunner objects
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
saver_pretrain.restore(sess, checkpoint_file)
start_time = time.time()
for step in range(int(num_steps_per_epoch * num_epochs)):
imgs, lbls, augs = sess.run([tf_images, tf_labels, tf_aug])
imgs, lbls = aug_parallel_v2(imgs, lbls, augs)
imgs = imgs[:, 50:349, 50:349, :]
imgs = 2*(imgs.astype(np.float32)) - 1
lbls = lbls.astype(np.int32)
weight = multiplier[lbls]
weight = np.array(weight).reshape((batch_size, 1))
# print(imgs[0, 0:10, 0:10, 0:2])
if step % num_batches_per_epoch == 0:
logging.info('Epoch %s/%s', step / num_batches_per_epoch + 1, num_epochs)
learning_rate_value, accuracy_value = sess.run([lr, accuracy],
feed_dict={images: imgs, labels: lbls, weighted_level: weight})
logging.info('Current Learning Rate: %s', learning_rate_value)
logging.info('Current Streaming Accuracy: %s', accuracy_value)
# optionally, print your logits and predictions for a sanity check that things are going fine.
logits_value, probabilities_value, predictions_value, labels_value = sess.run(
[logits, probabilities, predictions, labels],
feed_dict={images: imgs, labels: lbls, weighted_level: weight})
print('logits: \n', logits_value)
print('Probabilities: \n', probabilities_value)
print('predictions: \n', predictions_value)
print('Labels:\n:', labels_value)
# Log the summaries every 10 step.
if step % 20 == 0:
loss, global_step_count = train_step(sess, train_op, global_step, imgs, lbls, weight)
summaries = sess.run(my_summary_op, feed_dict={images: imgs, labels: lbls, weighted_level: weight})
writer.add_summary(summaries, global_step_count)
# sess.summary_computed(sess, summaries)
# If not, simply run the training step
else:
loss, _ = train_step(sess, train_op, global_step, imgs, lbls, weight)
if step % 2000 == 0:
logging.info('Saving model to disk now.')
saver_train.save(sess, checkpoint_save_addr, global_step=global_step)
print('one batch time: ', time.time() - start_time)
start_time = time.time()
# We log the final training loss and accuracy
logging.info('Final Loss: %s', loss)
logging.info('Final Accuracy: %s', sess.run(accuracy))
# Once all the training has been done, save the log files and checkpoint model
logging.info('Finished training! Saving model to disk now.')
saver_train.save(sess, checkpoint_save_addr, global_step=global_step)
# Stop the threads
coord.request_stop()
# Wait for threads to stop
coord.join(threads)
sess.close()
if __name__ == '__main__':
run()
I am new here, and don't have enough reputation to post images.
Here are two links for the accuracy plot and losses plot. You can easily tell the regularization loss is in a dominant position.
This is a difficult question to answer. I can give some pointers though.
In general, when you try to minimize digits_loss, that is to fit your model to your data, you will slowly change the weights in your layers. To counter potential overfitting, a L2 regularization loss (the sum of the squares of all weights, reg_loss in your code) is generally added to the overall loss (total_loss in your code.) These two forces generally act against each other and if the balance is right, you train a good model.
In your case you're taking a network (resnet_v2) that was developed for 1,001 classes and try to predict 8,142 classes. No problem with that per se, but you're upsetting the balance. So I believe you need to override the default weight decay of 0.00004 for resnet v2 to some higher value, in this line (note only 3 zeros in the decimals for a 10x increase):
with slim.arg_scope( inception_resnet_v2_arg_scope( weight_decay = 0.0004 ) ):
A higher weight_decay parameter will force the L2 loss to decrease faster. The problem is that this number is just a guess, I have no idea what an ideal value would be. You need to experiment with multiple values and figure it out.

logits and labels must be same size logits_size

hi i used my own dataset for train the model but i have error that i mention below . my dataset has 124 class and lables are 0 to 123 , size is 60*60 gray , batch is 10 and result is :
lables.eval() --> [ 1 101 101 103 103 103 103 100 102 1] -- len(lables.eval())= 10
orginal pic size -- > (?, 60, 60, 1)
First convolutional layer (?, 30, 30, 32)
Second convolutional layer. (?, 15, 15, 64)
flatten. (?, 14400)
dense .1 (?, 2048)
dense .2 (?, 124)
error
ensorflow.python.framework.errors_impl.InvalidArgumentError: logits and
labels must have the same first dimension, got logits shape [40,124] and
labels shape [10]
code
def model_fn(features, labels, mode, params):
# Reference to the tensor named "image" in the input-function.
x = features["image"]
# The convolutional layers expect 4-rank tensors
# but x is a 2-rank tensor, so reshape it.
net = tf.reshape(x, [-1, img_size, img_size, num_channels])
# First convolutional layer.
net = tf.layers.conv2d(inputs=net, name='layer_conv1',
filters=32, kernel_size=3,
padding='same', activation=tf.nn.relu)
net = tf.layers.max_pooling2d(inputs=net, pool_size=2, strides=2)
# Second convolutional layer.
net = tf.layers.conv2d(inputs=net, name='layer_conv2',
filters=64, kernel_size=3,
padding='same', activation=tf.nn.relu)
net = tf.layers.max_pooling2d(inputs=net, pool_size=2, strides=2)
# Flatten to a 2-rank tensor.
net = tf.contrib.layers.flatten(net)
# Eventually this should be replaced with:
# net = tf.layers.flatten(net)
# First fully-connected / dense layer.
# This uses the ReLU activation function.
net = tf.layers.dense(inputs=net, name='layer_fc1',
units=2048, activation=tf.nn.relu)
# Second fully-connected / dense layer.
# This is the last layer so it does not use an activation function.
net = tf.layers.dense(inputs=net, name='layer_fc_2',
units=num_classes)
# Logits output of the neural network.
logits = net
y_pred = tf.nn.softmax(logits=logits)
y_pred_cls = tf.argmax(y_pred, axis=1)
if mode == tf.estimator.ModeKeys.PREDICT:
spec = tf.estimator.EstimatorSpec(mode=mode,
predictions=y_pred_cls)
else:
cross_entropy =
tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels,
logits=logits)
loss = tf.reduce_mean(cross_entropy)
optimizer =
tf.train.AdamOptimizer(learning_rate=params["learning_rate"])
train_op = optimizer.minimize(
loss=loss, global_step=tf.train.get_global_step())
metrics = \
{
"accuracy": tf.metrics.accuracy(labels, y_pred_cls)
}
spec = tf.estimator.EstimatorSpec(
mode=mode,
loss=loss,
train_op=train_op,
eval_metric_ops=metrics)
return spec`
this lables comes from here via tfrecords:
def input_fn(filenames, train, batch_size=10, buffer_size=2048):
# Args:
# filenames: Filenames for the TFRecords files.
# train: Boolean whether training (True) or testing (False).
# batch_size: Return batches of this size.
# buffer_size: Read buffers of this size. The random shuffling
# is done on the buffer, so it must be big enough.
# Create a TensorFlow Dataset-object which has functionality
# for reading and shuffling data from TFRecords files.
dataset = tf.data.TFRecordDataset(filenames=filenames)
# Parse the serialized data in the TFRecords files.
# This returns TensorFlow tensors for the image and labels.
dataset = dataset.map(parse)
if train:
# If training then read a buffer of the given size and
# randomly shuffle it.
dataset = dataset.shuffle(buffer_size=buffer_size)
# Allow infinite reading of the data.
num_repeat = None
else:
# If testing then don't shuffle the data.
# Only go through the data once.
num_repeat = 1
# Repeat the dataset the given number of times.
dataset = dataset.repeat(num_repeat)
# Get a batch of data with the given size.
dataset = dataset.batch(batch_size)
# Create an iterator for the dataset and the above modifications.
iterator = dataset.make_one_shot_iterator()
# Get the next batch of images and labels.
images_batch, labels_batch = iterator.get_next()
# The input-function must return a dict wrapping the images.
x = {'image': images_batch}
y = labels_batch
print(x, ' - ', y.get_shape())
return x, y
i generate labeles via this code for example image name=math-1 , lable = 1
def get_lable_and_image(path):
lbl = []
img = []
for filename in glob.glob(os.path.join(path, '*.png')):
img.append(filename)
lable = filename[41:].split()[0].split('-')[1]
lbl.append(int(lable))
lables = np.array(lbl)
images = np.array(img)
# print(images[1], lables[1])
return images, lables
i push images and lables to create tfrecords
def convert(image_paths, labels, out_path):
# Args:
# image_paths List of file-paths for the images.
# labels Class-labels for the images.
# out_path File-path for the TFRecords output file.
print("Converting: " + out_path)
# Number of images. Used when printing the progress.
num_images = len(image_paths)
# Open a TFRecordWriter for the output-file.
with tf.python_io.TFRecordWriter(out_path) as writer:
# Iterate over all the image-paths and class-labels.
for i, (path, label) in enumerate(zip(image_paths, labels)):
# Print the percentage-progress.
print_progress(count=i, total=num_images-1)
# Load the image-file using matplotlib's imread function.
img = imread(path)
# Convert the image to raw bytes.
img_bytes = img.tostring()
# Create a dict with the data we want to save in the
# TFRecords file. You can add more relevant data here.
data = \
{
'image': wrap_bytes(img_bytes),
'label': wrap_int64(label)
}
# Wrap the data as TensorFlow Features.
feature = tf.train.Features(feature=data)
# Wrap again as a TensorFlow Example.
example = tf.train.Example(features=feature)
# Serialize the data.
serialized = example.SerializeToString()
# Write the serialized data to the TFRecords file.
writer.write(serialized)

My tensorboard events appear many charts I did not summary

I only summary my loss as 'xentropy_mean' in training() ,but in tensorboard ,I had not find the 'xentropy_mean' chart but many other charts I did not defined. I don't know where I wrote wrong, and what's the matter indeed. Is it because I use thread in my code? If I don't use thread, how should I wrote it?
The tensorboard screenshot
There are 6 charts under the queue,I don't know what are the meanings either
I create the model in the file below
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import tensorflow.python.platform
import tensorflow as tf
# The MNIST dataset has 10 classes, representing the digits 0 through 9.
NUM_CLASSES = 16
# The MNIST images are always 28x28 pixels.
IMAGE_SIZE = 28
IMAGE_PIXELS = 784
def inference(images, hidden1_units, hidden2_units):
"""Build the MNIST model up to where it may be used for inference.
Args:
images: Images placeholder, from inputs().
hidden1_units: Size of the first hidden layer.
hidden2_units: Size of the second hidden layer.
Returns:
softmax_linear: Output tensor with the computed logits.
"""
# Hidden 1
with tf.name_scope('hidden1'):
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))),
name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]),
name='biases')
hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
# Hidden 2
with tf.name_scope('hidden2'):
weights = tf.Variable(
tf.truncated_normal([hidden1_units, hidden2_units],
stddev=1.0 / math.sqrt(float(hidden1_units))),
name='weights')
biases = tf.Variable(tf.zeros([hidden2_units]),
name='biases')
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
# Linear
with tf.name_scope('softmax_linear'):
weights = tf.Variable(
tf.truncated_normal([hidden2_units, NUM_CLASSES],
stddev=1.0 / math.sqrt(float(hidden2_units))),
name='weights')
biases = tf.Variable(tf.zeros([NUM_CLASSES]),
name='biases')
logits = tf.matmul(hidden2, weights) + biases
return logits
def loss(logits, labels):
batch_size = tf.size(labels)
#print('batch size %d' %(batch_size))
labels = tf.expand_dims(labels, 1)
indices = tf.expand_dims(tf.range(0, batch_size), 1)
concated = tf.concat(1, [indices, labels])
#print('Done2')
onehot_labels = tf.sparse_to_dense(
concated, tf.pack([batch_size, 16]), 1.0, 0.0)
#print('Done1')
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits,
onehot_labels,
name='xentropy')
loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
tf.summary.scalar(loss.op.name, loss)
return loss
def training(loss, learning_rate):
optimizer=tf.train.GradientDescentOptimizer(learning_rate)
global_step=tf.Variable(0,name='global_step',trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op
def evaluation(logits, labels):
correct = tf.nn.in_top_k(logits, labels, 1)
# Return the number of true entries.
return tf.reduce_sum(tf.cast(correct, tf.int32))
and train the model in this file:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os.path
import sys
import time
import numpy as np
import tensorflow as tf
import mnist
# Basic model parameters as external flags.
#FLAGS = None
# Constants used for dealing with the files, matches convert_to_records.
TRAIN_FILE = 'train.tfrecords'
VALIDATION_FILE = 'validation.tfrecords'
TEST_FILE='test.tfrecords'
flags = tf.app.flags
FLAGS = flags.FLAGS
#FLAGS = None
flags.DEFINE_string('train_dir', '/home/queenie/image2tfrecord/tfrecords-28-gray/', 'Directory to put the training data.')
flags.DEFINE_string('filename', 'train.tfrecords', 'Directory to put the training data.')
flags.DEFINE_integer('batch_size', 100, 'Batch size. '
'Must divide evenly into the dataset sizes.')
flags.DEFINE_integer('num_epochs', None, 'Batch size. '
'Must divide evenly into the dataset sizes.')
flags.DEFINE_integer('hidden1', 128,'balabala')
flags.DEFINE_integer('hidden2', 32,'balabala')
flags.DEFINE_integer('learning_rate', 0.01,'balabala')
flags.DEFINE_integer('max_steps', 50000,'balabala')
def placeholder_inputs(batch_size):
images_placeholder=tf.placeholder(tf.float32,shape=(batch_size,mnist.IMAGE_PIXELS))
labels_placeholder=tf.placeholder(tf.int32,shape=(batch_size))
return images_placeholder,labels_placeholder
def fill_feed_dict(images_feed,labels_feed,images_pl,labels_pl):
feed_dict={
images_pl:images_feed,
labels_pl:labels_feed,
}
return feed_dict
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
})
# Convert from a scalar string tensor (whose single string has
# length mnist.IMAGE_PIXELS) to a uint8 tensor with shape
# [mnist.IMAGE_PIXELS].
image = tf.decode_raw(features['image_raw'], tf.uint8)
image.set_shape([mnist.IMAGE_PIXELS])
# OPTIONAL: Could reshape into a 28x28 image and apply distortions
# here. Since we are not applying any distortions in this
# example, and the next step expects the image to be flattened
# into a vector, we don't bother.
# Convert from [0, 255] -> [-0.5, 0.5] floats.
image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
# Convert label from a scalar uint8 tensor to an int32 scalar.
label = tf.cast(features['label'], tf.int32)
return image, label
def do_eval(sess,eval_correct):
true_count=0
for step in xrange(FLAGS.batch_size):
#print(sess.run(eval_correct))
true_count+=sess.run(eval_correct)
precision=float(true_count)/FLAGS.batch_size/FLAGS.batch_size
print(' Num examples: %d Num correct: %d Precision # 1: %0.04f' %
(FLAGS.batch_size, true_count, precision))
return precision
def inputs(train, batch_size, num_epochs):
if not num_epochs: num_epochs = None
if train=='train':
filename=os.path.join(FLAGS.train_dir,TRAIN_FILE)
elif train=='validation':
filename=os.path.join(FLAGS.train_dir,VALIDATION_FILE)
else:
filename=os.path.join(FLAGS.train_dir,TEST_FILE)
# filename = os.path.join(FLAGS.train_dir,
# TRAIN_FILE if train else VALIDATION_FILE)
with tf.name_scope('input'):
filename_queue = tf.train.string_input_producer(
[filename], num_epochs=None)
# Even when reading in multiple threads, share the filename
# queue.
image, label = read_and_decode(filename_queue)
# Shuffle the examples and collect them into batch_size batches.
# (Internally uses a RandomShuffleQueue.)
# We run this in two threads to avoid being a bottleneck.
images, sparse_labels = tf.train.shuffle_batch(
[image, label], batch_size=batch_size, num_threads=2,
capacity=1000 + 3 * batch_size,
# Ensures a minimum amount of shuffling of examples.
min_after_dequeue=1000)
return images, sparse_labels
def run_training():
with tf.Graph().as_default():
# Build a Graph that computes predictions from the inference model.
images, labels = inputs(train='train', batch_size=FLAGS.batch_size,
num_epochs=FLAGS.num_epochs)
images_valid,labels_valid=inputs(train='validation', batch_size=FLAGS.batch_size,
num_epochs=FLAGS.num_epochs)
images_test,labels_test=inputs(train='test', batch_size=FLAGS.batch_size,
num_epochs=FLAGS.num_epochs)
logits = mnist.inference(images,
FLAGS.hidden1,
FLAGS.hidden2)
# Add to the Graph the loss calculation.
valid_prediction=mnist.inference(images_valid,FLAGS.hidden1,FLAGS.hidden2)
test_prediction=mnist.inference(images_test,FLAGS.hidden1,FLAGS.hidden2)
loss = mnist.loss(logits, labels)
# Add to the Graph operations that train the model.
train_op = mnist.training(loss, FLAGS.learning_rate)
eval_correct=mnist.evaluation(logits,labels)
eval_correct_valid=mnist.evaluation(valid_prediction,labels_valid)
eval_correct_test=mnist.evaluation(test_prediction,labels_test)
summary_op=tf.merge_all_summaries()
# The op for initializing the variables.
init_op = tf.group(tf.initialize_all_variables(),
tf.initialize_local_variables())
saver = tf.train.Saver()
# Create a session for running operations in the Graph.
sess = tf.Session()
# Initialize the variables (the trained variables and the
# epoch counter).
sess.run(init_op)
summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)
# Start input enqueue threads.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
try:
step = 0
train_precision=0
validation_precision=0
test_precision=0
#while not coord.should_stop():
while not coord.should_stop():
start_time = time.time()
_, loss_value,images_see,labels_see = sess.run([train_op, loss,images,labels])
#print('run done')
duration = time.time() - start_time
# Print an overview fairly often.
if step % 100 == 0:
print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value,
duration))
precision_tr=do_eval(sess,eval_correct)
summary_str=sess.run(summary_op)
summary_writer.add_summary(summary_str,step)
if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
checkpoint_file = os.path.join(FLAGS.train_dir, 'model.ckpt')
saver.save(sess, checkpoint_file, global_step=step)
print('Train:')
do_eval(sess,eval_correct)
print('Validation:')
do_eval(sess,eval_correct_valid)
print('Test:')
do_eval(sess,eval_correct_test)
step += 1
except tf.errors.OutOfRangeError:
print('Done training for %d epochs, %d steps.' % (FLAGS.num_epochs, step))
finally:
# When done, ask the threads to stop.
coord.request_stop()
# Wait for threads to finish.
coord.join(threads)
sess.close()
run_training()
then I get the tensorboard like these,6 charts about queue.
The tensorboard screenshot
The queue charts you are seeing are created by default from shuffle_batch and friends, and can be used to monitor the performance of your input pipeline (you'll ideally want all the queues to stay at capacity, as that means your GPU isn't blocking on input reading).
I don't understand why your summary isn't showing in tensorboard. Can I get more information?