Can a field be cast to non null version of itself? - kotlin

I have a data class
data class MyModel(private val _data: MyData? = null)
And I want to ensure my data is only accessible when it is not null, else throw.
I use the below which is good.
fun getData(): MyData {
return checkNotNull(_data) { "data shouldn't be null" }
}
However, if I follow the guide as per Override getter for Kotlin data class, the below complaints I need to return MyData? instead of MyData
val data = _data
get(): MyData {
return checkNotNull(field) { "data shouldn't be null" }
}
Is it true that field can't be cast to the Non-null version of it when return?

If your goal is to declare a getter for a Any? property that returns a Any, it's not possible. You'll get the following error:
Getter return type must be equal to the type of the property
So attempting to do something like
val test : String?
get() : String = "hi"
Wouldn't work.
However, you could hide the nullable property and expose a non-nullable property which references the nullable value via casting:
private val test : String? = "hi"
val testNotNull : String = test as String
If test referenced null, an exception will be thrown.
For example:
fun main(args: Array<String>) = print(Demo().testNotNull)
class Demo(private var test: String? = "hi") {
val testNotNull : String
. get() = test as String
}
You can test this snippit out at try.kotlin.org
Although this is not safe. You should rethink your design. If you're not interoping with Java, you shouldn't punish yourself with nullable types.

I don’t think you can. What you did with the fun getData() is a valid approach IMO. Or you could just not use a data class and create a normal class, obviously.
What I think it may work is with something like this:
typealias notNullType = MyData
data class Test(private val _value: MyData? = null) {
val v: notNullType = _value as notNullType
get() { return field }
}
This would totally allow you to do:
fun play() {
val t = Test(null)
print(t.v) //see what I did? :-)
}
THAT BEING SAID… I don’t think “hiding” the ? optional is necessarily a good idea.

It doesn't necessarily mean that the MyData class is null if you cast it like MyData?
The '?' Just allows the object to be null in the instance that it actually becomes null to avoid an exception at runtime.
You can make your class nullable and it can still contain your data.

Related

what is the difference between var and val in extension properties?

I created extension properties and I'm having this problem
fun main(args: Array<String>) {
println(Animal("Mia",1,1.0))
}
class Animal(var name : String, var age : Int, var weight : Double)
var Animal.getXXX : String // compiler : Property must be initialized
get() = "$name, $age, $weight"
val Animal.getXXX : String // the compiler is running properly
get() = "$name, $age, $weight"
in the code above. why should i use val instead of var?
The error message is perhaps a bit confusing. For extension fields using var they are expected to have both a getter and a setter. Fields using val only need to have a getter (and can't have a setter). The following code works:
var Animal.getFoo : String
get() = "$name, $age, $weight"
set(value) { /* do something */ }
var is mutable and we can reassign or change its value. But we can't change val value.
The difference between var and val in extension properties is that while writing extension property if you use val you can only use get because you can not set value to it as it is immutable constant variable you can not use set() in val extension property
For Example
val String.extensionProperty
get() = "Value"
And if you want to make an extension property with var which you want to be mutable so you can set value into it as well and perform any other action while updating varaible.
For Example
var String.extensionProperty
get() = "Value"
set(value) {
println("variable has been updated with this data $value")
}

Why not implement singleton pattern for the NULL object in Kotlin?

class Foo(val param1: String, var param2: Int) {
// class body
companion object {
val NULL = Foo("", 0)
}
}
Is the NULL object valid in Kotlin?
Although Kotlin allows adding default values in the constructor, is there a reason for NULL object to be discouraged, like in the above snippet?
Lets, say I don't need to allow constructing objects just with one param like: Foo("ABC") or Foo(5). (...after modifying the Foo to have default values in the constructor that is)
https://sourcemaking.com/design_patterns/null_object
Singleton isn't the right word for what you have there. A singleton is a class with only one instance allowed. This is a merely a globally accessible instance of a class that can have many instances.
I would advise against calling it NULL because of the meaning of the word null in Kotlin. Could be rather misleading. Maybe call it EMPTY.
Whether it's a bad practice is going to depend on how you're using it, but there's nothing inherently wrong with keeping some long-lived instances of classes.
I would however avoid doing this with a mutable class like this. It is implied that it is a constant, but in your example, someone could change the value of NULL.param2 from anywhere in an app and break code elsewhere that relies on its value being 0.
A null object is a valid Kotlin design pattern.
When you use this pattern, you should create an interface and make both regular class(es) and a null object implement it. Also, the null object should be immutable like all other singletons.
Here is how you can implement the null object design pattern in Kotlin:
interface Foo {
val param1: String
val param2: Int
}
object NullFoo : Foo {
override val param1: String get() = ""
override val param2: Int get() = 0
}
class FooImpl(override val param1: String, override var param2: Int) : Foo
Alternatively, you can use actual null value and extension functions (properties) with nullable receivers:
class Foo(val param1: String, var param2: Int)
val Foo?.param1: String get() = this?.param1 ?: ""
val Foo?.param2: Int get() = this?.param2 ?: 0
You can create a factory function without parameters that will return a null object:
class Foo(val param1: String, var param2: Int) {
// class body
}
private val nullFoo = Foo("", 0)
fun Foo() = nullFoo

How do I create an enum from an Int in Kotlin?

I have this enum:
enum class Types(val value: Int) {
FOO(1)
BAR(2)
FOO_BAR(3)
}
How do I create an instance of that enum using an Int?
I tried doing something like this:
val type = Types.valueOf(1)
And I get the error:
Integer literal does not conform to the expected type String
enum class Types(val value: Int) {
FOO(1),
BAR(2),
FOO_BAR(3);
companion object {
fun fromInt(value: Int) = Types.values().first { it.value == value }
}
}
You may want to add a safety check for the range and return null.
Enum#valueOf is based on name. Which means in order to use that, you'd need to use valueof("FOO"). The valueof method consequently takes a String, which explains the error. A String isn't an Int, and types matter. The reason I mentioned what it does too, is so you know this isn't the method you're looking for.
If you want to grab one based on an int value, you need to define your own function to do so. You can get the values in an enum using values(), which returns an Array<Types> in this case. You can use firstOrNull as a safe approach, or first if you prefer an exception over null.
So add a companion object (which are static relative to the enum, so you can call Types.getByValue(1234) (Types.COMPANION.getByValue(1234) from Java) over Types.FOO.getByValue(1234).
companion object {
private val VALUES = values()
fun getByValue(value: Int) = VALUES.firstOrNull { it.value == value }
}
values() returns a new Array every time it's called, which means you should cache it locally to avoid re-creating one every single time you call getByValue. If you call values() when the method is called, you risk re-creating it repeatedly (depending on how many times you actually call it though), which is a waste of memory.
Admittedly, and as discussed in the comments, this may be an insignificant optimization, depending on your use. This means you can also do:
companion object {
fun getByValue(value: Int) = values().firstOrNull { it.value == value }
}
if that's something you'd prefer for readability or some other reason.
The function could also be expanded and check based on multiple parameters, if that's something you want to do. These types of functions aren't limited to one argument.
If you are using integer value only to maintain order, which you need to access correct value, then you don't need any extra code. You can use build in value ordinal. Ordinal represents position of value in enum declaration.
Here is an example:
enum class Types {
FOO, //Types.FOO.ordinal == 0 also position == 0
BAR, //Types.BAR.ordinal == 1 also position == 1
FOO_BAR //Types.FOO_BAR.ordinal == 2 also position == 2
}
You can access ordinal value simply calling:
Types.FOO.ordinal
To get correct value of enum you can simply call:
Types.values()[0] //Returns FOO
Types.values()[1] //Returns BAR
Types.values()[2] //Returns FOO_BAR
Types.values() returns enum values in order accordingly to declaration.
Summary:
Types.values(Types.FOO.ordinal) == Types.FOO //This is true
If integer values don't match order (int_value != enum.ordinal) or you are using different type (string, float...), than you need to iterate and compare your custom values as it was already mentioned in this thread.
It really depends on what you actually want to do.
If you need a specific hardcoded enum value, then you can directly use Types.FOO
If you are receiving the value dynamically from somewhere else in your code, you should try to use the enum type directly in order not to have to perform this kind of conversions
If you are receiving the value from a webservice, there should be something in your deserialization tool to allow this kind of conversion (like Jackson's #JsonValue)
If you want to get the enum value based on one of its properties (like the value property here), then I'm afraid you'll have to implement your own conversion method, as #Zoe pointed out.
One way to implement this custom conversion is by adding a companion object with the conversion method:
enum class Types(val value: Int) {
FOO(1),
BAR(2),
FOO_BAR(3);
companion object {
private val types = values().associate { it.value to it }
fun findByValue(value: Int): Types? = types[value]
}
}
Companion objects in Kotlin are meant to contain members that belong to the class but that are not tied to any instance (like Java's static members).
Implementing the method there allows you to access your value by calling:
var bar = Types.findByValue(2) ?: error("No Types enum value found for 2")
Note that the returned value is nullable, to account for the possibility that no enum value corresponds to the parameter that was passed in. You can use the elvis operator ?: to handle that case with an error or a default value.
If you hate declaring for each enum type a companion object{ ... } to achieve EMotorcycleType.fromInt(...). Here's a solution for you.
EnumCaster object:
object EnumCaster {
inline fun <reified E : Enum<E>> fromInt(value: Int): E {
return enumValues<E>().first { it.toString().toInt() == value }
}
}
Enum example:
enum class EMotorcycleType(val value: Int){
Unknown(0),
Sport(1),
SportTouring(2),
Touring(3),
Naked(4),
Enduro(5),
SuperMoto(6),
Chopper(7),
CafeRacer(8),
.....
Count(9999);
override fun toString(): String = value.toString()
}
Usage example 1: Kotlin enum to jni and back
fun getType(): EMotorcycleType = EnumCaster.fromInt(nGetType())
private external fun nGetType(): Int
fun setType(type: EMotorcycleType) = nSetType(type.value)
private external fun nSetType(value: Int)
---- or ----
var type : EMotorcycleType
get() = EnumCaster.fromInt(nGetType())
set(value) = nSetType(value.value)
private external fun nGetType(): Int
private external fun nSetType(value: Int)
Usage example 2: Assign to val
val type = EnumCaster.fromInt<EMotorcycleType>(aValidTypeIntValue)
val typeTwo : EMotorcycleType = EnumCaster.fromInt(anotherValidTypeIntValue)
A naive way can be:
enum class Types(val value: Int) {
FOO(1),
BAR(2),
FOO_BAR(3);
companion object {
fun valueOf(value: Int) = Types.values().find { it.value == value }
}
}
Then you can use
var bar = Types.valueOf(2)
Protocol orientated way with type-safety
interface RawRepresentable<T> {
val rawValue: T
}
inline fun <reified E, T> valueOf(value: T): E? where E : Enum<E>, E: RawRepresentable<T> {
return enumValues<E>().firstOrNull { it.rawValue == value }
}
enum class Types(override val rawValue: Int): RawRepresentable<Int> {
FOO(1),
BAR(2),
FOO_BAR(3);
}
Usage
val type = valueOf<Type>(2) // BAR(2)
You can use it on non-integer type, too.
I would build the 'reverse' map ahead of time. Probably not a big improvement, but also not much code.
enum class Test(val value: Int) {
A(1),
B(2);
companion object {
val reverseValues: Map<Int, Test> = values().associate { it.value to it }
fun valueFrom(i: Int): Test = reverseValues[i]!!
}
}
Edit: map...toMap() changed to associate per #hotkey's suggestion.
try this...
companion object{
fun FromInt(v:Int):Type{
return Type::class.java.constructors[0].newInstance(v) as Type
}
}
This is for anyone looking for getting the enum from its ordinal or index integer.
enum class MyEnum { RED, GREEN, BLUE }
MyEnum.values()[1] // GREEN
Another solution and its variations:
inline fun <reified T : Enum<T>> enumFromIndex(i: Int) = enumValues<T>()[i]
enumFromIndex<MyEnum>(1) // GREEN
inline fun <reified T : Enum<T>> enumFromIndex(i: Int) = enumValues<T>().getOrNull(i)
enumFromIndex<MyEnum>(3) ?: MyEnum.RED // RED
inline fun <reified T : Enum<T>> enumFromIndex(i: Int, default: T) =
enumValues<T>().getOrElse(i) { default }
enumFromIndex(2, MyEnum.RED) // BLUE
It is an adapted version of another answer. Also, thanks to Miha_x64 for this answer.
Another option...
enum class Types(val code: Int) {
FOO(1),
BAR(2),
FOO_BAR(3);
companion object {
val map = values().associate { it.code to it }
// Get Type by code with check existing codes and default
fun getByCode(code: Int, typeDefault_param: Types = FOO): Types {
return map[code] ?: typeDefault_param
}
}
}
fun main() {
println("get 3: ${Types.getByCode(3)}")
println("get 10: ${Types.getByCode(10)}")
}
get 3: FOO_BAR
get 10: FOO

How to implement mutable optional in Kotlin?

I want a class which is equivalent to Java Optional but also
Properly handles null value ("Not set" state is different from "Null set")
Is mutable
Uses Kotlin built-in null-safety, type parameter can be either nullable or non-nullable which affects all methods.
Non-working code:
class MutableOptional<T> {
private var value: T? = null
private var isSet: Boolean = false
fun set(value: T)
{
this.value = value
isSet = true
}
fun unset()
{
isSet = false
value = null
}
fun get(): T
{
if (!isSet) {
throw Error("Value not set")
}
return value!! // <<< NPE here
}
}
fun f()
{
val opt = MutableOptional<Int?>()
opt.set(null)
assertNull(opt.get())
}
The problem is that if I try to set null, get() call fails with null pointer exception (caused by !! operator).
Some not-working proposals:
Do not use members of type "T?" in such class. I would not use it if I knew how to leave them uninitialized (not allowed by the compiler) or how to make them to have default initialization.
Use "fun get(): T?" (with nullable result). I want the result type to have the same nullability as the class type parameter. Otherwise there is no meaning in such null-safety if it is lost in a simple generic class, and I will need to set !! manually where I am sure it is non-nullable (the thing the compiler should ensure), making my code looking like wedge-writing.
Note: This example is synthetic, I do not really need the mutable optional, it is just a simple and understandable example, illustrating a problem I encounter occasionally with Kotlin generics and null-safety. Finding solution to this particular example will help with many similar problems. Actually I have a solution for immutable version of this class but it involves making interface and two implementation classes for present and non-present values. Such immutable optional can be used as type of "value" member but I think it's quite big overhead (accounting also wrapper object creation for each set()) just to overcome the language constraints.
The compiler wants you to write code that will be type-safe for all possible T, both nullable and not-null (unless you specify a not-null upper bound for the type parameter, such as T : Any, but this is not what you need here).
If you store T? in a property, it is a different type from T in case of not-null type arguments, so you are not allowed to use T and T? interchangeably.
However, making an unchecked cast allows you to bypass the restriction and return the T? value as T. Unlike the not-null assertion (!!), the cast is not checked at runtime, and it won't fail when it encounters a null.
Change the get() function as follows:
fun get(): T {
if (!isSet) {
throw Error("Value not set")
}
#Suppress("unchecked_cast")
return value as T
}
I got a similar issue. My use case was to differentiate null and undefined value when I deserialize JSON object. So I create an immutable Optional that was able to handle null value. Here I share my solution:
interface Optional<out T> {
fun isDefined(): Boolean
fun isUndefined(): Boolean
fun get(): T
fun ifDefined(consumer: (T) -> Unit)
class Defined<out T>(private val value: T) : Optional<T> {
override fun isDefined() = true
override fun isUndefined() = false
override fun get() = this.value
override fun ifDefined(consumer: (T) -> Unit) = consumer(this.value)
}
object Undefined : Optional<Nothing> {
override fun isDefined() = false
override fun isUndefined() = true
override fun get() = throw NoSuchElementException("No value defined")
override fun ifDefined(consumer: (Nothing) -> Unit) {}
}
}
fun <T> Optional<T>.orElse(other: T): T = if (this.isDefined()) this.get() else other
The trick: the orElse method have to be defined as an extension to not break the covariance, because Kotlin does not support lower bound for now.
Then we can define a MutableOptional with no cast in the following way:
class MutableOptional<T> {
private var value: Optional<T> = Optional.Undefined
fun get() = value.get()
fun set(value: T) { this.value = Optional.Defined(value) }
fun unset() { this.value = Optional.Undefined }
}
I am happy with my immutable Optional implementation. But I am not very happy with MutableOptional: I dislike the previous solution based on casting (I dislike to cast). But my solution creates unnecessary boxing, it can be worst...

Kotlin: single property with multiple setters of different types

I'm trying to build a class that has a property of LocalDate type which has setters that accept different types: LocalDate or String. In case of LocalDate, the value gets assigned directly, in case of String, it gets parsed and then assigned.
In Java, I just need to implement two overloaded setters handling both of above mentioned cases. But I have no idea how to handle that in Kotlin. I have tried this:
class SomeExampleClass(var _date: LocalDate) {
var date = _date
set(value) {
when(value) {
is LocalDate -> value
is String -> LocalDate.parse(value)
}
}
}
It doesn't compile. How can I resolve such a problem?
After some time I returned to the problem of overloaded setters and developed the following solution:
class A(_date: LocalDate) {
var date: Any = _date
set(value) {
field = helperSet(value)
}
get() = field as LocalDate
private fun <T> helperSet(t: T) = when (t) {
is LocalDate -> t
is String -> LocalDate.parse(t)
else -> throw IllegalArgumentException()
}
}
So if you just want to construct it (via constructor), just create a secondary constructor
SomeExampleClass(LocalDate.MAX)
SomeExampleClass("2007-12-03")
class SomeExampleClass(var _date: LocalDate) {
constructor(_date: String) : this(LocalDate.parse(_date))
}