The following snippet is from a fairly large piece of code but hopefully I can give all the information necessary:
y2 = tf.matmul(y1,ymask)
dist = tf.norm(ystar-y2,axis=0)
y1 and y2 are 128x30 and ymask is 30x30. ystar is 128x30. dist is 1x30. When ymask is the identity matrix, everything works fine. But when I set it to be all zeros, apart from a single 1 along the diagonal (so as to set all columns but one in y2 to be zero), I get nans for the gradient of dist with respect to y2, using tf.gradients(dist, [y2]). The specific value of dist is [0,0,7.9,0,...], with all the ystar-y2 values being around the range (-1,1) in the third column and zero elsewhere.
I'm pretty confused as to why a numerical issue would occur here, given there are no logs or divisions, is this underflow? Am I missing something in the maths?
For context, I'm doing this to try to train individual dimensions of y, one at a time, using the whole network.
longer version to reproduce:
import tensorflow as tf
import numpy as np
import pandas as pd
batchSize = 128
eta = 0.8
tasks = 30
imageSize = 32**2
groups = 3
tasksPerGroup = 10
trainDatapoints = 10000
w = np.zeros([imageSize, groups * tasksPerGroup])
toyIndex = 0
for toyLoop in range(groups):
m = np.ones([imageSize]) * np.random.randn(imageSize)
for taskLoop in range(tasksPerGroup):
w[:, toyIndex] = m * 0.1 * np.random.randn(1)
toyIndex += 1
xRand = np.random.normal(0, 0.5, (trainDatapoints, imageSize))
taskLabels = np.matmul(xRand, w) + np.random.normal(0,0.5,(trainDatapoints, groups * tasksPerGroup))
DF = np.concatenate((xRand, taskLabels), axis=1)
trainDF = pd.DataFrame(DF[:trainDatapoints, ])
# define graph variables
x = tf.placeholder(tf.float32, [None, imageSize])
W = tf.Variable(tf.zeros([imageSize, tasks]))
b = tf.Variable(tf.zeros([tasks]))
ystar = tf.placeholder(tf.float32, [None, tasks])
ymask = tf.placeholder(tf.float32, [tasks, tasks])
dataLength = tf.cast(tf.shape(ystar)[0],dtype=tf.float32)
y1 = tf.matmul(x, W) + b
y2 = tf.matmul(y1,ymask)
dist = tf.norm(ystar-y2,axis=0)
mse = tf.reciprocal(dataLength) * tf.reduce_mean(tf.square(dist))
grads = tf.gradients(dist, [y2])
trainStep = tf.train.GradientDescentOptimizer(eta).minimize(mse)
# build graph
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
randTask = np.random.randint(0, 9)
ymaskIn = np.zeros([tasks, tasks])
ymaskIn[randTask, randTask] = 1
batch = trainDF.sample(batchSize)
batch_xs = batch.iloc[:, :imageSize]
batch_ys = np.zeros([batchSize, tasks])
batch_ys[:, randTask] = batch.iloc[:, imageSize + randTask]
gradOut = sess.run(grads, feed_dict={x: batch_xs, ystar: batch_ys, ymask: ymaskIn})
sess.run(trainStep, feed_dict={x: batch_xs, ystar: batch_ys, ymask:ymaskIn})
Here's a very simple reproduction:
import tensorflow as tf
with tf.Graph().as_default():
y = tf.zeros(shape=[1], dtype=tf.float32)
dist = tf.norm(y,axis=0)
(grad,) = tf.gradients(dist, [y])
with tf.Session():
print(grad.eval())
Prints:
[ nan]
The issue is that tf.norm computes sum(x**2)**0.5. The gradient is x / sum(x**2) ** 0.5 (see e.g. https://math.stackexchange.com/a/84333), so when sum(x**2) is zero we're dividing by zero.
There's not much to be done in terms of a special case: the gradient as x approaches all zeros depends on which direction it's approaching from. For example if x is a single-element vector, the limit as x approaches 0 could either be 1 or -1 depending on which side of zero it's approaching from.
So in terms of solutions, you could just add a small epsilon:
import tensorflow as tf
def safe_norm(x, epsilon=1e-12, axis=None):
return tf.sqrt(tf.reduce_sum(x ** 2, axis=axis) + epsilon)
with tf.Graph().as_default():
y = tf.constant([0.])
dist = safe_norm(y,axis=0)
(grad,) = tf.gradients(dist, [y])
with tf.Session():
print(grad.eval())
Prints:
[ 0.]
Note that this is not actually the Euclidean norm. It's a good approximation as long as the input is much larger than epsilon.
Related
Suppose I have the following code written in Tensorflow 1.x where I define custom loss function. I wish to remove .compat.v1., Session, placeholder etc. and convert it into Tensorflow 2.x.
How to do so?
import DGM
import tensorflow as tf
import numpy as np
import scipy.stats as spstats
import matplotlib.pyplot as plt
from tqdm.notebook import trange
# Option parameters
phi = 10
n = 0.01
T = 4
# Solution parameters (domain on which to solve PDE)
t_low = 0.0 - 1e-10
x_low = 0.0 + 1e-10
x_high = 1.0
# neural network parameters
num_layers = 3
nodes_per_layer = 50
# Training parameters
sampling_stages = 2500 # number of times to resample new time-space domain points
steps_per_sample = 20 # number of SGD steps to take before re-sampling
# Sampling parameters
nsim_interior = 100
nsim_boundary_1 = 50
nsim_boundary_2 = 50
nsim_initial = 50
x_multiplier = 1.1 # multiplier for oversampling i.e. draw x from [x_low, x_high * x_multiplier]
def sampler(nsim_interior, nsim_boundary_1, nsim_boundary_2, nsim_initial):
''' Sample time-space points from the function's domain; points are sampled
uniformly on the interior of the domain, at the initial/terminal time points
and along the spatial boundary at different time points.
Args:
nsim_interior: number of space points in the interior of U
nsim_boundary_1: number of space points in the boundary of U
nsim_boundary_2: number of space points in the boundary of U_x
nsim_initial: number of space points at the initial time
'''
# Sampler #1: domain interior
t_interior = np.random.uniform(low=t_low, high=T, size=[nsim_interior, 1])
x_interior = np.random.uniform(low=x_low, high=x_high*x_multiplier, size=[nsim_interior, 1])
# Sampler #2: spatial boundary 1
t_boundary_1 = np.random.uniform(low=t_low, high=T, size=[nsim_boundary_1, 1])
x_boundary_1 = np.ones((nsim_boundary_1, 1))
# Sampler #3: spatial boundary 2
t_boundary_2 = np.random.uniform(low=t_low, high=T, size=[nsim_boundary_2, 1])
x_boundary_2 = np.zeros((nsim_boundary_2, 1))
# Sampler #4: initial condition
t_initial = np.zeros((nsim_initial, 1))
x_initial = np.random.uniform(low=x_low, high=x_high*x_multiplier, size=[nsim_initial, 1])
return (
t_interior, x_interior,
t_boundary_1, x_boundary_1,
t_boundary_2, x_boundary_2,
t_initial, x_initial
)
def loss(
model,
t_interior, x_interior,
t_boundary_1, x_boundary_1,
t_boundary_2, x_boundary_2,
t_initial, x_initial
):
''' Compute total loss for training.
Args:
model: DGM model object
t_interior, x_interior: sampled time / space points in the interior of U
t_boundary_1, x_boundary_1: sampled time / space points in the boundary of U
t_boundary_2, x_boundary_2: sampled time / space points in the boundary of U_x
t_initial, x_initial: sampled time / space points at the initial time
'''
# Loss term #1: PDE
# compute function value and derivatives at current sampled points
u = model(t_interior, x_interior)
u_t = tf.gradients(ys=u, xs=t_interior)[0]
u_x = tf.gradients(ys=u, xs=x_interior)[0]
u_xx = tf.gradients(ys=u_x, xs=x_interior)[0]
diff_u = u_t - u_xx + phi**2 * (tf.nn.relu(u) + 1e-10)**n
# compute average L2-norm for the PDE
L1 = tf.reduce_mean(input_tensor=tf.square(diff_u))
# Loss term #2: First b. c.
u = model(t_boundary_1, x_boundary_1)
bc1_error = u - 1
# Loss term #3: Second b. c.
u = model(t_boundary_2, x_boundary_2)
u_x = tf.gradients(ys=u, xs=x_boundary_2)[0]
bc2_error = u_x - 0
# Loss term #3: Initial condition
u = model(t_initial, x_initial)
init_error = u - 1
# compute average L2-norm for the initial/boundary conditions
L2 = tf.reduce_mean(input_tensor=tf.square(bc1_error + bc2_error + init_error))
return L1, L2
# initialize DGM model (last input: space dimension = 1)
model = DGM.DGMNet(nodes_per_layer, num_layers, 1)
# tensor placeholders (_tnsr suffix indicates tensors)
# inputs (time, space domain interior, space domain at initial time)
t_interior_tnsr = tf.compat.v1.placeholder(tf.float32, [None,1])
x_interior_tnsr = tf.compat.v1.placeholder(tf.float32, [None,1])
t_boundary_1_tnsr = tf.compat.v1.placeholder(tf.float32, [None,1])
x_boundary_1_tnsr = tf.compat.v1.placeholder(tf.float32, [None,1])
t_boundary_2_tnsr = tf.compat.v1.placeholder(tf.float32, [None,1])
x_boundary_2_tnsr = tf.compat.v1.placeholder(tf.float32, [None,1])
t_initial_tnsr = tf.compat.v1.placeholder(tf.float32, [None,1])
x_initial_tnsr = tf.compat.v1.placeholder(tf.float32, [None,1])
# loss
L1_tnsr, L2_tnsr = loss(
model,
t_interior_tnsr, x_interior_tnsr,
t_boundary_1_tnsr, x_boundary_1_tnsr,
t_boundary_2_tnsr, x_boundary_2_tnsr,
t_initial_tnsr, x_initial_tnsr
)
loss_tnsr = L1_tnsr + L2_tnsr
# set optimizer
starting_learning_rate = 3e-4
global_step = tf.Variable(0, trainable=False)
lr = tf.compat.v1.train.exponential_decay(
learning_rate=starting_learning_rate,
global_step=global_step,
decay_steps=1e5,
decay_rate=0.96,
staircase=True,
)
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=lr).minimize(loss_tnsr)
# initialize variables
init_op = tf.compat.v1.global_variables_initializer()
# open session
sess = tf.compat.v1.Session()
sess.run(init_op)
try:
model.load_weights("checkpoint/")
print("Loading from checkpoint.")
except:
print("Checkpoint not found.")
# for each sampling stage
for i in trange(sampling_stages):
# sample uniformly from the required regions
t_interior, x_interior, \
t_boundary_1, x_boundary_1, \
t_boundary_2, x_boundary_2, \
t_initial, x_initial = sampler(
nsim_interior, nsim_boundary_1, nsim_boundary_2, nsim_initial
)
# for a given sample, take the required number of SGD steps
for _ in range(steps_per_sample):
loss, L1, L2, _ = sess.run(
[loss_tnsr, L1_tnsr, L2_tnsr, optimizer],
feed_dict = {
t_interior_tnsr: t_interior,
x_interior_tnsr: x_interior,
t_boundary_1_tnsr: t_boundary_1,
x_boundary_1_tnsr: x_boundary_1,
t_boundary_2_tnsr: t_boundary_2,
x_boundary_2_tnsr: x_boundary_2,
t_initial_tnsr: t_initial,
x_initial_tnsr: x_initial,
}
)
if i % 10 == 0:
print(f"Loss: {loss:.5f},\t L1: {L1:.5f},\t L2: {L2:.5f},\t iteration: {i}")
model.save_weights("checkpoint/")
I tried searching how to implement custom loss functions with model as an argument, but couldn't implement it.
For model.compile there is a loss argument for which you can pass the Loss function. May be a string (name of loss function), or a tf.keras.losses.Loss instance. For example
Model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3),
loss=tf.keras.losses.BinaryCrossentropy())
If you have created your custom loss function you can also pass that loss function to the loss argument by providing the name of that loss function. For example
def my_loss_fn(y_true, y_pred):
squared_difference = tf.square(y_true - y_pred)
return tf.reduce_mean(squared_difference, axis=-1)
model.compile(optimizer='adam', loss=my_loss_fn)
Thank You.
I want to reproduce a method from a paper, the code in this paper was written in tensorflow1.0 and I want to rewrite it in pytorch. A brief description, I want to get a set of G that can be used to reweight input data but in training, the G doesn't even change, this is the tensorflow code:
n,p = X_input.shape
n_e, p_e = X_encoder_input.shape
display_step = 100
X = tf.placeholder("float", [None, p])
X_encoder = tf.placeholder("float", [None, p_e])
G = tf.Variable(tf.ones([n,1]))
loss_balancing = tf.constant(0, tf.float32)
for j in range(1,p+1):
X_j = tf.slice(X_encoder, [j*n,0],[n,p_e])
I = tf.slice(X, [0,j-1],[n,1])
balancing_j = tf.divide(tf.matmul(tf.transpose(X_j),G*G*I),tf.maximum(tf.reduce_sum(G*G*I),tf.constant(0.1))) - tf.divide(tf.matmul(tf.transpose(X_j),G*G*(1-I)),tf.maximum(tf.reduce_sum(G*G*(1-I)),tf.constant(0.1)))
loss_balancing += tf.norm(balancing_j,ord=2)
loss_regulizer = (tf.reduce_sum(G*G)-n)**2 + 10*(tf.reduce_sum(G*G-1))**2#
loss = loss_balancing + 0.0001*loss_regulizer
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(loss)
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
and this is my rewriting pytorch code:
n, p = x_test.shape
loss_balancing = torch.tensor(0.0)
G = nn.Parameter(torch.ones([n,1]))
optimizer = torch.optim.RMSprop([G] , lr=0.001)
for i in range(num_steps):
for j in range(1, p+1):
x_j = x_all_encoder[j * n : j*n + n , :]
I = x_test[0:n , j-1:j]
balancing_j = torch.divide(torch.matmul(torch.transpose(x_j,0,1) , G * G * I) ,
torch.maximum( (G * G * I).sum() ,
torch.tensor(0.1) -
torch.divide(torch.matmul(torch.transpose(x_j,0,1) ,G * G * (1-I)),
torch.maximum( (G*G*(1-I)).sum() , torch.tensor(0.1) )
)
)
)
loss_balancing += nn.Parameter(torch.norm(balancing_j))
loss_regulizer = nn.Parameter(((G * G) - n).sum() ** 2 + 10 * ((G * G - 1).sum()) ** 2)
loss = nn.Parameter( loss_balancing + 0.0001 * loss_regulizer )
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % 100 == 0:
print('Loss:{:.4f}'.format(loss.item()))
and the G.grad = None, I want to know how to get the G a set of value by iteration to minimize the Loss , Thanks.
Firstly, please provide a minimal reproducible example. It will be very helpful for people to answer your question.
Since G.grad has no value, it indicates that loss.backward() didn't properly work.
The computation of gradient can be disturbed by many factors, but in this case, I suspect the maximum operation in your code prevents the backward flow since the maximum operation is not differentiable in general.
To check if this hypothesis is correct, you could check the gradient of a tensor created after the maximum operation which I can't do because provided code is not executable in my case.
I am trying to implement a custom loss function in Tensorflow 2.4 using the Keras backend.
The loss function is a ranking loss; I found the following paper with a somewhat log-likelihood loss: Chen et al. Single-Image Depth Perception in the Wild.
Similarly, I wanted to sample some (in this case 50) points from an image to compare the relative order between ground-truth and predicted depth maps using the NYU-Depth dataset. Being a fan of Numpy, I started working with that but came to the following exception:
ValueError: No gradients provided for any variable: [...]
I have learned that this is caused by the arguments not being filled when calling the loss function but instead, a C function is compiled which is then used later. So while I know the dimensions of my tensors (4, 480, 640, 1), I cannot work with the data as wanted and have to use the keras.backend functions on top so that in the end (if I understood correctly), there is supposed to be a path between the input tensors from the TF graph and the output tensor, which has to provide a gradient.
So my question now is: Is this a feasible loss function within keras?
I have already tried a few ideas and different approaches with different variations of my original code, which was something like:
def ranking_loss_function(y_true, y_pred):
# Chen et al. loss
y_true_np = K.eval(y_true)
y_pred_np = K.eval(y_pred)
if y_true_np.shape[0] != None:
num_sample_points = 50
total_samples = num_sample_points ** 2
err_list = [0 for x in range(y_true_np.shape[0])]
for i in range(y_true_np.shape[0]):
sample_points = create_random_samples(y_true, y_pred, num_sample_points)
for x1, y1 in sample_points:
for x2, y2 in sample_points:
if y_true[i][x1][y1] > y_true[i][x2][y2]:
#image_relation_true = 1
err_list[i] += np.log(1 + np.exp(-1 * y_pred[i][x1][y1] + y_pred[i][x2][y2]))
elif y_true[i][x1][y1] < y_true[i][x2][y2]:
#image_relation_true = -1
err_list[i] += np.log(1 + np.exp(y_pred[i][x1][y1] - y_pred[i][x2][y2]))
else:
#image_relation_true = 0
err_list[i] += np.square(y_pred[i][x1][y1] - y_pred[i][x2][y2])
err_list = np.divide(err_list, total_samples)
return K.constant(err_list)
As you can probably tell, the main idea was to first create the sample points and then based on the existing relation between them in y_true/y_pred continue with the corresponding computation from the cited paper.
Can anyone help me and provide some more helpful information or tips on how to correctly implement this loss using keras.backend functions? Trying to include the ordinal relation information really confused me compared to standard regression losses.
EDIT: Just in case this causes confusion: create_random_samples() just creates 50 random sample points (x, y) coordinate pairs based on the shape[1] and shape[2] of y_true (image width and height)
EDIT(2): After finding this variation on GitHub, I have tried out a variation using only TF functions to retrieve data from the tensors and compute the output. The adjusted and probably more correct version still throws the same exception though:
def ranking_loss_function(y_true, y_pred):
#In the Wild ranking loss
y_true_np = K.eval(y_true)
y_pred_np = K.eval(y_pred)
if y_true_np.shape[0] != None:
num_sample_points = 50
total_samples = num_sample_points ** 2
bs = y_true_np.shape[0]
w = y_true_np.shape[1]
h = y_true_np.shape[2]
total_samples = total_samples * bs
num_pairs = tf.constant([total_samples], dtype=tf.float32)
output = tf.Variable(0.0)
for i in range(bs):
sample_points = create_random_samples(y_true, y_pred, num_sample_points)
for x1, y1 in sample_points:
for x2, y2 in sample_points:
y_true_sq = tf.squeeze(y_true)
y_pred_sq = tf.squeeze(y_pred)
d1_t = tf.slice(y_true_sq, [i, x1, y1], [1, 1, 1])
d2_t = tf.slice(y_true_sq, [i, x2, y2], [1, 1, 1])
d1_p = tf.slice(y_pred_sq, [i, x1, y1], [1, 1, 1])
d2_p = tf.slice(y_pred_sq, [i, x2, y2], [1, 1, 1])
d1_t_sq = tf.squeeze(d1_t)
d2_t_sq = tf.squeeze(d2_t)
d1_p_sq = tf.squeeze(d1_p)
d2_p_sq = tf.squeeze(d2_p)
if d1_t_sq > d2_t_sq:
# --> Image relation = 1
output.assign_add(tf.math.log(1 + tf.math.exp(-1 * d1_p_sq + d2_p_sq)))
elif d1_t_sq < d2_t_sq:
# --> Image relation = -1
output.assign_add(tf.math.log(1 + tf.math.exp(d1_p_sq - d2_p_sq)))
else:
output.assign_add(tf.math.square(d1_p_sq - d2_p_sq))
return output/num_pairs
EDIT(3): This is the code for create_random_samples():
(FYI: Because it was weird to get the shape from y_true in this case, I first proceeded to hard-code it here as I know it for the dataset which I am currently using.)
def create_random_samples(y_true, y_pred, num_points=50):
y_true_shape = (4, 480, 640, 1)
y_pred_shape = (4, 480, 640, 1)
if y_true_shape[0] != None:
num_samples = num_points
population = [(x, y) for x in range(y_true_shape[1]) for y in range(y_true_shape[2])]
sample_points = random.sample(population, num_samples)
return sample_points
I have 2 scenarios:
scenario 1:
op: sparse_tensor_dense_matmul
A: 1000x1000 sparsity = 90%
B: 1000x1000 sparsity = 0%
scenario 2:
op: matmul
A: 1000x1000 sparsity = 0%
B: 1000x1000 sparsity = 0%
I understand that GPUs do not compute sparse matrix multiplication well but I would certainly expect them to perform it atleast as well as they perform non-sparse matrix mulipliation. In my code I get 10x slower for sparse_tensor_dense_matmul!
import tensorflow as tf
import numpy as np
import time
import itertools
rate = 0.1
N = 1000
itrs = 1000
num = int(rate * N * N)
combs = np.array(list(itertools.product(range(N), range(N))))
choices = range(len(combs))
_idxs = np.random.choice(a=choices, size=num, replace=False).tolist()
_idxs = combs[_idxs]
_idxs = _idxs.tolist()
_idxs = sorted(_idxs)
_vals = np.float32(np.random.rand(num))
_y = np.random.uniform(low=-1., high=1., size=(N, N))
_z = np.random.uniform(low=-1., high=1., size=(N, N))
################################################
x = tf.SparseTensor(indices=_idxs, values=_vals, dense_shape=(N, N))
y = tf.Variable(_y, dtype=tf.float32)
z = tf.Variable(_z, dtype=tf.float32)
sparse_dot = tf.sparse_tensor_dense_matmul(x, y)
dot = tf.matmul(z, y)
################################################
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
tf.local_variables_initializer().run()
start = time.time()
for i in range(itrs):
[_sparse_dot] = sess.run([sparse_dot], feed_dict={})
total = time.time() - start
print (total)
start = time.time()
for i in range(itrs):
[_dot] = sess.run([dot], feed_dict={})
total = time.time() - start
print (total)
################################################
25.357680797576904
2.7684502601623535
I would like to use the sparse_softmax_cross_entropy_with_logits
with the julia TensorFlow wrapper.
The operations is defined in the code here.
Basically, as I understand it the first argument should be logits, that would normally be fed to softmax to get them to be category probabilities (~1hot output).
And the second should be the correct labels as label ids.
I have adjusted the example code from the TensorFlow.jl readme
See below:
using Distributions
using TensorFlow
# Generate some synthetic data
x = randn(100, 50)
w = randn(50, 10)
y_prob = exp(x*w)
y_prob ./= sum(y_prob,2)
function draw(probs)
y = zeros(size(probs))
for i in 1:size(probs, 1)
idx = rand(Categorical(probs[i, :]))
y[i, idx] = 1
end
return y
end
y = draw(y_prob)
# Build the model
sess = Session(Graph())
X = placeholder(Float64)
Y_obs = placeholder(Float64)
Y_obs_lbl = indmax(Y_obs, 2)
variable_scope("logisitic_model", initializer=Normal(0, .001)) do
global W = get_variable("weights", [50, 10], Float64)
global B = get_variable("bias", [10], Float64)
end
L = X*W + B
Y=nn.softmax(L)
#costs = log(Y).*Y_obs #Dense (Orginal) way
costs = nn.sparse_softmax_cross_entropy_with_logits(L, Y_obs_lbl+1) #sparse way
Loss = -reduce_sum(costs)
optimizer = train.AdamOptimizer()
minimize_op = train.minimize(optimizer, Loss)
saver = train.Saver()
# Run training
run(sess, initialize_all_variables())
cur_loss, _ = run(sess, [Loss, minimize_op], Dict(X=>x, Y_obs=>y))
When I run it however, I get an error:
Tensorflow error: Status: Incompatible shapes: [1,100] vs. [100,10]
[[Node: gradients/SparseSoftmaxCrossEntropyWithLogits_10_grad/mul = Mul[T=DT_DOUBLE, _class=[], _device="/job:localhost/replica:0/task:0/cpu:0"](gradients/SparseSoftmaxCrossEntropyWithLogits_10_grad/ExpandDims, SparseSoftmaxCrossEntropyWithLogits_10:1)]]
in check_status(::TensorFlow.Status) at /home/ubuntu/.julia/v0.5/TensorFlow/src/core.jl:101
in run(::TensorFlow.Session, ::Array{TensorFlow.Port,1}, ::Array{Any,1}, ::Array{TensorFlow.Port,1}, ::Array{Ptr{Void},1}) at /home/ubuntu/.julia/v0.5/TensorFlow/src/run.jl:96
in run(::TensorFlow.Session, ::Array{TensorFlow.Tensor,1}, ::Dict{TensorFlow.Tensor,Array{Float64,2}}) at /home/ubuntu/.julia/v0.5/TensorFlow/src/run.jl:143
This only happens when I try to train it.
If I don't include an optimise function/output then it works fine.
So I am doing something that screws up the gradient math.