Mixing properties of multiple records in one .tfrecords file - tensorflow

I have a dataset of around 1M examples. I each example to a separate .tfrecord file, which resulted in around 500GB sitting in some network location.
Reading multiple small files from this network location is extremely slow, so I'm thinking about grouping around 100 examples into one .tfrecord file.
I am worried though, that examples from the same .tfrecords file will always appear in the same minibatch (or one minibatch after each other), which is bad for the proper mixing of training data I want to have.
my input pipeline is the following:
I have a tf.train.string_input_producer(files, capacity=100000) for the filenames queue, using TFRecordReader.read to read from the filenames queue, and use tf.train.batch that creates an examples queue and returns a batch from it using dequeue_many.
I fear that once the filenames queue dequeues a filename, all examples from it will be read and enqueued into the examples FIFO queue created by tf.train.batch, which will result in the same examples being in the same minibatches over and over.
Is it really going to have the same examples in the same minibatch over and over? If so, should I create a Shuffle queue for examples, instead of using tf.train.batch?

One of the points of TFRecord is to store many files in the same location to overcome the problem of opening/closing many files. So your approach of one tfrecord per one example does not make sense. You can put even all examples in one file or have 10k per file. Regarding shuffling: there are two types shuffling which serve different purposes and shuffle different things:
tf.train.string_input_producer shuffle: Boolean. If true, the strings are randomly shuffled within each epoch.. So if you have a few files ['file1', 'file2', ..., 'filen'] this randomly selects a file from this list. If case of false, the files follow one after each other.
tf.train.shuffle_batch Creates batches by randomly shuffling tensors. So it takes batch_size tensors from your queue (you will need to create a queue with tf.train.start_queue_runners ) and shuffles them.

Related

Tensorflow data.Dataset.map and memory storage

I have a dataset of images that is too large to store on memory. What I plan to do is loading pairs of the paths to the images and corresponding labels as my dataset, then use a generator function during training to convert only the paths in my batch to images before feeding them to the network.
Is data.Dataset.map() a good way to do this? Does it return a mapping function, that can be applied only to the current batch during training, or does it perform the mapping operation on the whole dataset at once, occupying lots of memory? In the second case, what is an alternative?
A few tutorials I went through made me believe the mapping takes place per batch, but this quote from the documentation suggests a whole new dataset is returned: "This transformation applies map_func to each element of this dataset, and returns a new dataset containing the transformed elements, in the same order as they appeared in the input."
The key thing to understand here is that tf.data.Dataset objects are generally "lazy" in that elements are only processed as needed (in a batched Dataset, elements == batches). When iterating over a dataset, this usually means that only the next requested element is prepared and then returned. So to answer your question: When using map to load data from disk, and applying this to a dataset of file names, only one batch of the loaded data should be stored in memory at the same time, and you should be able to process the dataset just fine. However, this can significantly slow down training if loading the files is a bottleneck in terms of speed.
There are some exceptions though, for example:
When you use the shuffle method, you need to provide a buffer size, and AFAIK the entire buffer is preprocessed at once. This can lead to issues since you want a large buffer for good shuffling, but this requires more memory. Thus you probably want to use shuffle before applying map.
The prefetch method results in multiple elements being prepared in order to avoid the model having to wait for the next batch to be processed.
Note that this lazy behavior also has some disadvantages, e.g.
You can only iterate over datasets sequentially; there is no random access.
A dataset doesn't even know how many elements it contains (this would require iterating over the entire set).

Is there an optimal number of elements for a tfrecords file?

This is follow up to these SO questions
What is the need to do sharding of TFRecords files?
optimal size of a tfrecord file
and this passage from this tutorial
For this small dataset we will just create one TFRecords file for the
training-set and another for the test-set. But if your dataset is very
large then you can split it into several TFRecords files called
shards. This will also improve the random shuffling, because the
Dataset API only shuffles from a smaller buffer of e.g. 1024 elements
loaded into RAM. So if you have e.g. 100 TFRecords files, then the
randomization will be much better than for a single TFRecords file.
https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/18_TFRecords_Dataset_API.ipynb
So there is an optimal file size, but I am wondering, if there's an optimal number of elements? Since it's the elements itself that's being distributed to the GPUs cores?
Are you trying to optimize:
1 initial data randomization?
2 data randomization across training batches and/or epochs?
3 training/validation throughput (ie, gpu utilization)?
Initial data randomization should be handled when data are initially saved into sharded files. This can be challenging, assuming you can't read the data into memory. One approach is to read all the unique data ids into memory, shuffle those, do your train/validate/test split, and then write your actual data to file shards in that randomized order. Now your data are initially shuffled/split/sharded.
Initial data randomization will make it easier to maintain randomization during training. However, I'd still say it is 'best practice' to re-shuffle file names and re-shuffle a data memory buffer as part of the train/validate data streams. Typically, you'll set up an input stream using multiple threads/processes. The first step is to randomize the file input streams by re-shuffling the filenames. This can be done like:
train_files = tf.data.Dataset.list_files('{}/d*.tfr'.format(train_dir),
shuffle=True)
Now, if your initial data write was already randomized, you 'could' read the entire data from one file, before going to the next, but that would still impact re-randomization throughout the training process, so typically you interleave file reads, reading a certain number of records from each file. This also improves throughput, assuming you are using multiple file read processes (which you should do, to maximize gpu throughput).
blocksize = 1000 # samples read from one file before switching files
train_data = train_files.interleave(interleaveFiles,
block_length=blocksize,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
Here, we're reading 1000 samples from each file, before going on to the next. Again, to re-shuffle the training data each epoch (which may or may not be critical), we re-shuffle the data in memory, setting a memory buffer based on what's available on the machine and how large our data items are (note - before formatting the data for gpu).
buffersize = 1000000 # samples read before shuffling in memory
train_data = train_data.shuffle(buffersize,
reshuffle_each_iteration=True)
train_data = train_data.repeat()
The repeat() call is just to allow the data set to 'wrap around' during training. This may or may not be important, depending on how you set up your training process.
To optimize throughput, you can do 2 things:
1 alter the order of operations in the data input stream. Typically, if you put your randomization operations early, they can operate on 'low weight' entities, like file names, rather than on tensors.
2 use pre-fetching to let your cpu processes stream data during gpu calculations
train_data = train_data.map(mapData,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
train_data = train_data.padded_batch(batchsize)
train_data = train_data.prefetch(10)
So, mapping and batching happens last (this is usually preferred for maximizing gpu throughput, but it can depend on other factors, like data size (pre and post-tensorizing), and how computationally expensive your map function is).
Finally, you can tune the prefetch size to maximize gpu throughput, constrained by system memory and memory speed.
So, how does this all impact the 'optimal' number of data items in each sharded file?
Obviously, if your data/file size is > your blocksize, blocksize becomes irrelevant, and you might as well read each file completely. Typically, if you are going to use this paradigm, you wand blocksize << data/file. I use 10x; so if my blocksize is 1000, I have ~10,000 data items in the file. This may not be optimal, but so far I can maintain >90% gpu usage using this approach on my specific hardware. If you want to tune for your hardware, you could start somewhere at ~10x and adjust, based on whatever you are specifically trying to optimize.
If you have very large numbers of files, you may run into problems maintaining good file read streams, but on a modern system you should be able to get to 100,000 files or more and still be fine. Moving large numbers of files around can be difficult, but usually easier than having very small numbers of very big files, so there are some (broad) constraints on file sizes that can impact how many data items/file you end up with. Generally speaking, I'd say having on the order of 100s of files would be ideal for a large dataset. That way you can easily stream files across a network efficiently (again, that will depend on your network). If the data set is small, you'll have 10s to 50s of files, which is fine for streaming, depending on file size (I typically try to hit 100-300MB/file, which works well for moving things around a LAN or WAN).
So, I think file-size and number-of-files places much stronger constraints on your process than number of data items/file, so long as you have an appropriate number of data items/file, given your file read blocksize. Again, you could hyper-shard your files (1 data item/file?), and read entire files into memory, without using file blocking. That might work, and it would certainly be lightweight to shuffle file names, rather than data items. But you might also end up with millions of files!
To really optimize, you'll need to set up an end-to-end training system on a particular machine, and then tweak it to see what works best for your particular data, network, and hardware. So long as your data are effectively randomized and your data files are easy to store/use/share, you just want to optimize gpu throughput. I would be surprised if reordering the data input stream and pre-fetching doesn't get you there.

Tensorflow Shuffle Batch Non Deterministic

I am trying to get deterministic behaviour from tf.train.shuffle_batch(). I could, instead, use tf.train.batch() which works fine (always the same order of elements), but I need to get examples from multiple tf-records and so I am stuck with shuffle_batch().
I am using:
random.seed(0)
np.random.seed(0)
tf.set_random_seed(0)
data_entries = tf.train.shuffle_batch(
[data], batch_size=batch_size, num_threads=1, capacity=512,
seed=57, min_after_dequeue=32)
But every time I restart my script I get slightly different results (not completely different, but about 20% of the elements are in the wrong order).
Is there anything I am missing?
Edit: Solved it! See my answer below!
Maybe I misunderstood something, but you can collect multiple tf-records in a queue with tf.train.string_input_producer(), then read the examples into tensors and finally use tf.train.batch().
Take a look at CIFAR-10 input.
Answering my own question:
First the reason shuffle_batch is non deterministic:
The time until I request a batch is inherently random.
In that time, a random number of tensors are available.
Tensorflow calls a shuffle operation that is seeded but depending on the number of items, it will return a different order.
So no matter the seeding, the order is always different unless the number of elements is constant. So the solution is to keep the number of elements constant, but how we do it?
By setting capacity=min_after_dequeue+batch_size. This will force Tensorflow to fill up the queue until it reaches full capacity before dequeuing an item. Therefore, at the time of the shuffle operation, we have capacity many items which is a constant number.
So why are we doing this? Because one tf.record contains many examples but we want examples from multiple tf.records. With a normal batch we would first get all the examples of one record and then of the next one. This also means we should set min_after_dequeue to something larger than the number of items in one tf.record. In my example, I have 50 examples in one file so I set min_after_dequeue=2048.
Alternatively, we can also shuffle the examples before creating the tf.records, but this was not possible for me because I read tf.records from multiple directories (each with their own dataset).
Last Note: You should also use a batch size of 1 to be super save.

Incorporating very large constants in Tensorflow

For example, the comments for the Tensorflow image captioning example model state:
NOTE: This script will consume around 100GB of disk space because each image
in the MSCOCO dataset is replicated ~5 times (once per caption) in the output.
This is done for two reasons:
1. In order to better shuffle the training data.
2. It makes it easier to perform asynchronous preprocessing of each image in
TensorFlow.
The primary goal of this question is to see if there is an alternative to this type of duplication. In my use case, storing the data in this way would require each image to be duplicated in the TFRecord files many more times, on the order of 20 - 50 times.
I should note first that I have already fed the images through VGGnet to extract 4096 dim features, and I have these stored as a mapping between filename and the vectors.
Before switching over to Tensorflow, I had been feeding batches containing filename strings and then looking up the corresponding vector on a per-batch basis. This allows me to store all of the image data in ~15GB without needing to duplicate the data on disk.
My first attempt to do this in in Tensorflow involved storing indices in the TFExample buffers and then doing a "preprocessing" step to slice into the corresponding matrix:
img_feat = pd.read_pickle("img_feats.pkl")
img_matrix = np.stack(img_feat)
preloaded_images = tf.Variable(img_matrix)
first_image = tf.slice(preloaded_images, [0,0], [1,4096])
However, in this case, Tensorflow disallows a variable larger than 2GB. So my next thought was to partition this across several variables:
img_tensors = []
for i in range(NUM_SPLITS):
with tf.Graph().as_default():
img_tensors.append(tf.Variable(img_matrices[i], name="preloaded_images_%i"%i))
first_image = tf.concat(1, [tf.slice(t, [0,0], [1,4096//NUM_SPLITS]) for t in img_tensors])
In this case, I'm forced to store each partition on a separate graph, because it seems any one graph cannot be this large either. However, now the concat fails because each tensor I am concatenating is on a separate graph.
Any advice on incorporating a large amount (~15GB) of preloaded into the Tensorflow graph.
Potentially related is this question; however in this case I'd like to override the decoding of the actual JPEG file with the preprocessed value in a tensor op.

Getting each example exactly once

For monitoring my model's performance on my evaluation dataset, I'm using tf.train.string_input_producer for the filenames queue on .tfr files, then I feed the parsed examples to the tf.train.batch function, that produces batches of a fixed size.
Assume my evaluation dataset contains exactly 761 examples (a prime number). To read all the examples exactly once, I have to have a batch size that divides 761, but there is no such, except 1 that will be too slow and 761 that will not fit in my GPU. Any standard way for reading each example exactly once?
Actually, my dataset size is not 761, but there is no number in the reasonable range of 50-300 that divides it exactly. Also I'm working with many different datasets, and finding a number that approximately divides the number of examples in each dataset can be a hassle.
Note that using the num_epochs parameter to tf.train.string_input_producer does not solve the issue.
Thanks!
You can use reader.read_up_to as in this example. Your last batch will be smaller, so you need to make sure your network doesn't hard-wire batch-size anywhere