i have a dataframe like:
Company Date Country
ABC 2017-09-17 USA
BCD 2017-09-16 USA
ABC 2017-09-17 USA
BCD 2017-09-16 USA
BCD 2017-09-16 USA
I want to get a resultant df as :
Company No: of Days
ABC 2
BCD 3
How do i do it ?
You can use value_counts and rename_axis with reset_index:
df1 = df['Company'].value_counts()
.rename_axis('Company').reset_index(name='No: of Companies')
print (df1)
Company No: of Companies
0 BCD 3
1 ABC 2
Another solution with groupby and aggregating size, last reset_index:
df1 = df.groupby('Company').size().reset_index(name='No: of Companies')
print (df1)
Company No: of Companies
0 BCD 3
1 ABC 2
If need count Date columns:
df1 = df['Date'].value_counts().rename_axis('Date').reset_index(name='No: of Days')
print (df1)
Date No: of Days
0 2017-09-16 3
1 2017-09-17 2
df1 = df.groupby('Date').size().reset_index(name='No: of Days')
print (df1)
Date No: of Days
0 2017-09-16 3
1 2017-09-17 2
EDIT:
If need count pairs Date and Company columns:
df1 = df.groupby(['Date', 'Company']).size().reset_index(name='No: of Days per company')
print (df1)
Date Company No: of Days per company
0 2017-09-16 BCD 3
1 2017-09-17 ABC 2
Related
We have a dataframe containing an 'ID' and 'DAY' columns, which shows when a specific customer made a complaint. We need to drop duplicates from the 'ID' column, but only if the duplicates happened 30 days apart, tops. Please see the example below:
Current Dataset:
ID DAY
0 1 22.03.2020
1 1 18.04.2020
2 2 10.05.2020
3 2 13.01.2020
4 3 30.03.2020
5 3 31.03.2020
6 3 24.02.2021
Goal:
ID DAY
0 1 22.03.2020
1 2 10.05.2020
2 2 13.01.2020
3 3 30.03.2020
4 3 24.02.2021
Any suggestions? I have tried groupby and then creating a loop to calculate the difference between each combination, but because the dataframe has millions of rows this would take forever...
You can compute the difference between successive dates per group and use it to form a mask to remove days that are less than 30 days apart:
df['DAY'] = pd.to_datetime(df['DAY'], dayfirst=True)
mask = (df
.sort_values(by=['ID', 'DAY'])
.groupby('ID')['DAY']
.diff().lt('30d')
.sort_index()
)
df[~mask]
NB. the potential drawback of this approach is that if the customer makes a new complaint within the 30days, this restarts the threshold for the next complaint
output:
ID DAY
0 1 2020-03-22
2 2 2020-10-05
3 2 2020-01-13
4 3 2020-03-30
6 3 2021-02-24
Thus another approach might be to resample the data per group to 30days:
(df
.groupby('ID')
.resample('30d', on='DAY').first()
.dropna()
.convert_dtypes()
.reset_index(drop=True)
)
output:
ID DAY
0 1 2020-03-22
1 2 2020-01-13
2 2 2020-10-05
3 3 2020-03-30
4 3 2021-02-24
You can try group by ID column and diff the DAY column in each group
df['DAY'] = pd.to_datetime(df['DAY'], dayfirst=True)
from datetime import timedelta
m = timedelta(days=30)
out = df.groupby('ID').apply(lambda group: group[~group['DAY'].diff().abs().le(m)]).reset_index(drop=True)
print(out)
ID DAY
0 1 2020-03-22
1 2 2020-05-10
2 2 2020-01-13
3 3 2020-03-30
4 3 2021-02-24
To convert to original date format, you can use dt.strftime
out['DAY'] = out['DAY'].dt.strftime('%d.%m.%Y')
print(out)
ID DAY
0 1 22.03.2020
1 2 10.05.2020
2 2 13.01.2020
3 3 30.03.2020
4 3 24.02.2021
I have two dataframe, please tell me how I can compare them by operator name, if it matches, then add the values of quantity and time to the first data frame.
In [2]: df1 In [3]: df2
Out[2]: Out[3]:
Name count time Name count time
0 Bob 123 4:12:10 0 Rick 9 0:13:00
1 Alice 99 1:01:12 1 Jone 7 0:24:21
2 Sergei 78 0:18:01 2 Bob 10 0:15:13
85 rows x 3 columns 105 rows x 3 columns
I want to get:
In [5]: df1
Out[5]:
Name count time
0 Bob 133 4:27:23
1 Alice 99 1:01:12
2 Sergei 78 0:18:01
85 rows x 3 columns
Use set_index and add them together. Finally, update back.
df1 = df1.set_index('Name')
df1.update(df1 + df2.set_index('Name'))
df1 = df1.reset_index()
Out[759]:
Name count time
0 Bob 133.0 04:27:23
1 Alice 99.0 01:01:12
2 Sergei 78.0 00:18:01
Note: I assume time columns in both df1 and df2 are already in correct date/time format. If they are in string format, you need to convert them before running above commands as follows:
df1.time = pd.to_timedelta(df1.time)
df2.time = pd.to_timedelta(df2.time)
I want to select all the previous 6 months records for a customer whenever a particular transaction is done by the customer.
Data looks like:
Cust_ID Transaction_Date Amount Description
1 08/01/2017 12 Moved
1 03/01/2017 15 X
1 01/01/2017 8 Y
2 10/01/2018 6 Moved
2 02/01/2018 12 Z
Here, I want to see for the Description "Moved" and then select all the last 6 months for every Cust_ID.
Output should look like:
Cust_ID Transaction_Date Amount Description
1 08/01/2017 12 Moved
1 03/01/2017 15 X
2 10/01/2018 6 Moved
I want to do this in python. Please help.
Idea is created Series of datetimes filtered by Moved and shifted by MonthOffset, last filter by Series.map values less like this offsets:
EDIT: Get all datetimes for each Moved values:
df['Transaction_Date'] = pd.to_datetime(df['Transaction_Date'])
df = df.sort_values(['Cust_ID','Transaction_Date'])
df['g'] = df['Description'].iloc[::-1].eq('Moved').cumsum()
s = (df[df['Description'].eq('Moved')]
.set_index(['Cust_ID','g'])['Transaction_Date'] - pd.offsets.MonthOffset(6))
mask = df.join(s.rename('a'), on=['Cust_ID','g'])['a'] < df['Transaction_Date']
df1 = df[mask].drop('g', axis=1)
EDIT1: Get all datetimes for Moved with minimal datetimes per groups, another Moved per groups are removed:
print (df)
Cust_ID Transaction_Date Amount Description
0 1 10/01/2017 12 X
1 1 01/23/2017 15 Moved
2 1 03/01/2017 8 Y
3 1 08/08/2017 12 Moved
4 2 10/01/2018 6 Moved
5 2 02/01/2018 12 Z
#convert to datetimes
df['Transaction_Date'] = pd.to_datetime(df['Transaction_Date'])
#mask for filter Moved rows
mask = df['Description'].eq('Moved')
#filter and sorting this rows
df1 = df[mask].sort_values(['Cust_ID','Transaction_Date'])
print (df1)
Cust_ID Transaction_Date Amount Description
1 1 2017-01-23 15 Moved
3 1 2017-08-08 12 Moved
4 2 2018-10-01 6 Moved
#get duplicated filtered rows in df1
mask = df1.duplicated('Cust_ID')
#create Series for map
s = df1[~mask].set_index('Cust_ID')['Transaction_Date'] - pd.offsets.MonthOffset(6)
print (s)
Cust_ID
1 2016-07-23
2 2018-04-01
Name: Transaction_Date, dtype: datetime64[ns]
#create mask for filter out another Moved (get only first for each group)
m2 = ~mask.reindex(df.index, fill_value=False)
df1 = df[(df['Cust_ID'].map(s) < df['Transaction_Date']) & m2]
print (df1)
Cust_ID Transaction_Date Amount Description
0 1 2017-10-01 12 X
1 1 2017-01-23 15 Moved
2 1 2017-03-01 8 Y
4 2 2018-10-01 6 Moved
EDIT2:
#get last duplicated filtered rows in df1
mask = df1.duplicated('Cust_ID', keep='last')
#create Series for map
s = df1[~mask].set_index('Cust_ID')['Transaction_Date']
print (s)
Cust_ID
1 2017-08-08
2 2018-10-01
Name: Transaction_Date, dtype: datetime64[ns]
m2 = ~mask.reindex(df.index, fill_value=False)
#filter by between Moved and next 6 months
df3 = df[df['Transaction_Date'].between(df['Cust_ID'].map(s), df['Cust_ID'].map(s + pd.offsets.MonthOffset(6))) & m2]
print (df3)
Cust_ID Transaction_Date Amount Description
3 1 2017-08-08 12 Moved
0 1 2017-10-01 12 X
4 2 2018-10-01 6 Moved
hope you can help me.
I have two pretty big Datasets.
DF1 Example:
|id| A_Workflow_Type_ID | B_Workflow_Type_ID | ...
1 123 456
2 789 222 ...
3 333 NULL ...
DF2 Example:
Workflow| Operation | Profile | Type | Name | ...
123 1 2 Low_Cost xyz ...
456 2 5 High_Cost z ...
I need to merge the two datasets without creating many NaNs and multiple columns. So i merge on the informations A_Workflow_Type_ID and B_Workflow_Type_ID from DF1 on Workflow from DF2.
I tried it with several join operations in pandas and the merge option it failure.
My last try:
all_Data = pd.merge(left=DF1,right=DF2, how='inner', left_on =['A_Workflow_Type_ID ','B_Workflow_Type_ID '], right_on=['Workflow'])
But that returns an error that they have to be equal lenght on both sides.
Thanks for the help!
You need reshape first by melt and then merge:
#generate all column without strings Workflow
cols = DF1.columns[~DF1.columns.str.contains('Workflow')]
print (cols)
Index(['id'], dtype='object')
df = DF1.melt(cols, value_name='Workflow', var_name='type')
print (df)
id type Workflow
0 1 A_Workflow_Type_ID 123.0
1 2 A_Workflow_Type_ID 789.0
2 3 A_Workflow_Type_ID 333.0
3 1 B_Workflow_Type_ID 456.0
4 2 B_Workflow_Type_ID 222.0
5 3 B_Workflow_Type_ID NaN
all_Data = pd.merge(left=df,right=DF2, on ='Workflow')
print (all_Data)
id type Workflow Operation Profile Type Name
0 1 A_Workflow_Type_ID 123 1 2 Low_Cost xyz
1 1 B_Workflow_Type_ID 456 2 5 High_Cost z
let's say I have the following table of customer data
df = pd.DataFrame.from_dict({"Customer":[0,0,1],
"Date":['01.01.2016', '01.02.2016', '01.01.2016'],
"Type":["First Buy", "Second Buy", "First Buy"],
"Value":[10,20,10]})
which looks like this:
Customer | Date | Type | Value
-----------------------------------------
0 |01.01.2016|First Buy | 10
-----------------------------------------
0 |01.02.2016|Second Buy| 20
-----------------------------------------
1 |01.01.2016|First Buy | 10
I want to pivot the table by the Type column.
However, the pivoting only gives the numeric Value columns as a result.
I'd desire a structure like:
Customer | First Buy Date | First Buy Value | Second Buy Date | Second Buy Value
---------------------------------------------------------------------------------
where the missing values are NAN or NAT
Is this possible using pivot_table. If not, I can imagine some workarounds, but they are quite lenghty. Any other suggestions?
Use unstack:
df1 = df.set_index(['Customer', 'Type']).unstack()
df1.columns = ['_'.join(cols) for cols in df1.columns]
print (df1)
Date_First Buy Date_Second Buy Value_First Buy Value_Second Buy
Customer
0 01.01.2016 01.02.2016 10.0 20.0
1 01.01.2016 None 10.0 NaN
If need another order of columns use swaplevel and sort_index:
df1 = df.set_index(['Customer', 'Type']).unstack()
df1.columns = ['_'.join(cols) for cols in df1.columns.swaplevel(0,1)]
df1.sort_index(axis=1, inplace=True)
print (df1)
First Buy_Date First Buy_Value Second Buy_Date Second Buy_Value
Customer
0 01.01.2016 10.0 01.02.2016 20.0
1 01.01.2016 10.0 None NaN