Receiving Negative Input Dimensions with TensorFlow MonitoredTrainingSession - tensorflow

I'm attempting to switch from a tf.Session() to a tf.train.MonitoredTrainingSession (all on one machine, no fancy distributed computing), but I'm getting an error that I don't fully understand.
W tensorflow/core/framework/op_kernel.cc:1148] Invalid argument: Shape [16,-1,4] has negative dimensions
E tensorflow/core/common_runtime/executor.cc:644] Executor failed to create kernel. Invalid argument: Shape [16,-1,4] has negative dimensions
[[Node: define_inputs/Placeholder = Placeholder[dtype=DT_FLOAT, shape=[16,?,4], _device="/job:local/replica:0/task:0/cpu:0"]()]]
Further down, I receive a little more information about the error:
Traceback (most recent call last):
File "/usr/local/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1139, in _do_call
return fn(*args)
File "/usr/local/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1121, in _run_fn
status, run_metadata)
File "/usr/local/Cellar/python3/3.6.1/Frameworks/Python.framework/Versions/3.6/lib/python3.6/contextlib.py", line 89, in __exit__
next(self.gen)
File "/usr/local/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py", line 466, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
I'm using tf.contrib.seq2seq and my input and output sequences have variable lengths e.g. x_placeholder = tf.placeholder(tf.float32, [batch_size, None, 4]).
I suspect that the queues that I'm using to read data and bucket data by sequence length are somehow failing or getting interrupted by the MonitoredTrainingSession, as I don't have this problem with a vanilla Session.
Here's the code that sets up the MonitoredTrainingSession
# create a global step
global_step = tf.contrib.framework.get_or_create_global_step()
# define graph
model = import_model(global_step)
# create a one process cluster with an in-process server
server = tf.train.Server.create_local_server()
# define hooks for writing summaries and model variables to disk
hooks = construct_training_hooks(model.summary_op)
with tf.train.MonitoredTrainingSession(master=server.target,
is_chief=True,
hooks=hooks) as monitored_sess:
# create coordinator to handle threading
coord = tf.train.Coordinator()
# start threads to enqueue input minibatches for training
threads = tf.train.start_queue_runners(sess=monitored_sess, coord=coord)
# train
while not monitored_sess.should_stop():
train_op(monitored_sess, model, x_train, y_train, y_lengths_train)
# when done, ask the threads to stop
coord.request_stop()
# wait for threads to finish
coord.join(threads)
Here is how I'm creating my training hooks:
def construct_training_hooks(summary_op):
hooks = [tf.train.StopAtStepHook(last_step=tf.flags.FLAGS.training_steps),
tf.train.CheckpointSaverHook(checkpoint_dir=tf.flags.FLAGS.log_dir,
saver=tf.train.Saver(),
save_steps=10),
tf.train.SummarySaverHook(output_dir=tf.flags.FLAGS.log_dir,
summary_op=summary_op,
save_steps=10)]
return hooks

Related

Naming TensorFlow/Keras checkpoints

I am following the "Text generation with an RNN" tutorial on TensorFlow (link). I have trained the model for 10 epochs, and would like to train it some more. I have already written the code that allows the model to resume training. (This resumes training starting from the most recent checkpoint -- in this case, checkpoint 10). It trains just fine. However, the saved checkpoints are overwriting the previous checkpoints. This is because when I rerun the code, the epoch number starts at 1 again. Therefore, when I have finished epochs 11 - 20, I still have only 10 checkpoints (1 - 10), but they have overwritten the previous 10 checkpoints. I would like to rename the new checkpoints to checkpoints 11 - 20, but have failed to do so. Here is the pertinent segment of the code:
# Directory where the checkpoints will be saved
checkpoint_dir = './training_checkpoints'
# Name of the checkpoint files
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch+10}")
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_prefix,
save_weights_only=True)
EPOCHS = 10
The only difference from the original code from the TensorFlow website is that I have modified the original line
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}")
to
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch+10}")
However, it does not work. Here is the error:
KeyError: 'epoch+10'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "project/RNN_text_generator_finetune.py", line 102, in <module>
history = model.fit(dataset, epochs=EPOCHS, callbacks=[checkpoint_callback])
File "/opt/miniconda3/envs/newest11142020/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py", line 108, in _method_wrapper
return method(self, *args, **kwargs)
File "/opt/miniconda3/envs/newest11142020/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py", line 1137, in fit
callbacks.on_epoch_end(epoch, epoch_logs)
File "/opt/miniconda3/envs/newest11142020/lib/python3.8/site-packages/tensorflow/python/keras/callbacks.py", line 412, in on_epoch_end
callback.on_epoch_end(epoch, logs)
File "/opt/miniconda3/envs/newest11142020/lib/python3.8/site-packages/tensorflow/python/keras/callbacks.py", line 1249, in on_epoch_end
self._save_model(epoch=epoch, logs=logs)
File "/opt/miniconda3/envs/newest11142020/lib/python3.8/site-packages/tensorflow/python/keras/callbacks.py", line 1282, in _save_model
filepath = self._get_file_path(epoch, logs)
File "/opt/miniconda3/envs/newest11142020/lib/python3.8/site-packages/tensorflow/python/keras/callbacks.py", line 1332, in _get_file_path
raise KeyError('Failed to format this callback filepath: "{}". '
KeyError: 'Failed to format this callback filepath: "./training_checkpoints/ckpt_{epoch+10}". Reason: \'epoch+10\''
Is there any way to rename the checkpoints in the code?
You can set as follows when resuming training
model.fit(...,
initial_epoch=epoch,
..)
Here, initial_epoch is an integer. Epoch at which to start training, it's useful for resuming a previous training run). Let's say you've trained a model at epoch 10 and stop training. So, when resuming the training, set the initial_epoch at 10. Src, and insightfull discussin.

slim.dataset_data_provider.DatasetDataProvider with num_epochs=1 throws error

I am using the relatively new tf.slim Dataset, DatasetDataProvider pattern. The following code shows the key fragments:
with tf.Graph().as_default():
# get the dataset split
dataset = util.get_split(train_or_eval,
args.tfrecord_folder,
0,
args.eval_set_size,
crop_size,
file_pattern=file_pattern)
features, labels = util.load_batch(dataset,
batch_size=args.eval_batch_size,
num_readers=10,
num_epochs=1,
is_training=True)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
# start the queue runner
with slim.queues.QueueRunners(sess):
...run some ops...
Here's the definition of load_batch:
def load_batch(dataset, batch_size=64, is_training=False,
num_epochs=None, common_queue_capacity=256,
common_queue_min=32, num_readers=None):
shuffle = True
# create the data provider
data_provider = slim.dataset_data_provider.DatasetDataProvider(
dataset,
num_readers=num_readers,
shuffle=shuffle,
num_epochs=num_epochs,
common_queue_capacity=
common_queue_capacity,
common_queue_min= common_queue_min,
seed=5)
# get the tensors from the data provider
images, labels = data_provider.get(['image_raw','label'])
# batch up some training data
images, labels = tf.train.batch([image_raw, label],
batch_size=batch_size,
num_threads=5,
allow_smaller_final_batch=True,
capacity=2 * batch_size)
return images, labels
This works fine when num_epochs=None (which according to the comments in the source means that a file of tfrecords can be read an infinite number of times), but fails when num_epochs=1. Here's the error message:
Out of range: FIFOQueue '_9_batch/fifo_queue' is closed and has insufficient elements (requested 32, current size 0)
Obviously, I need to be able to run an eval step without repeating the examples to get good accuracy and confusion matrix numbers. Any thoughts would be appreciated...
Per the request in the comments I am adding the stack trace. I am running this job in Google Cloud ML so its easiest to show it this way. The logs have a series of paired messages as follows:
Out of range: FIFOQueue '_6_batch/fifo_queue' is closed and has
insufficient elements (requested 32, current size 0)[[Node: batch =
QueueDequeueUpToV2[component_types=[DT_UINT8, DT_INT64, DT_STRING,
DT_STRING], timeout_ms=-1,
_device="/job:localhost/replica:0/task:0/cpu:0"](batch/fifo_queue, batch/n)]]
[[Node: batch =
QueueDequeueUpToV2[component_types=[DT_UINT8, DT_INT64, DT_STRING,
DT_STRING], timeout_ms=-1,
_device="/job:localhost/replica:0/task:0/cpu:0"](batch/fifo_queue, batch/n)]]
Final Stack Trace is
"The replica master 0 exited with a non-zero status of 1. Termination
reason: Error.Traceback (most recent call last): [...] File
"/root/.local/lib/python2.7/site-packages/trainer/task.py", line 509,
in
main() File "/root/.local/lib/python2.7/site-packages/trainer/task.py", line 505,
in main
run() File "/root/.local/lib/python2.7/site-packages/trainer/task.py", line 113,
in run
run_eval(args) File "/root/.local/lib/python2.7/site-packages/trainer/task.py", line 285,
in run_eval
is_training=True) File "/root/.local/lib/python2.7/site-packages/trainer/util.py", line 210,
in load_batch
capacity=3 * batch_size) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/input.py",
line 872, in batch
name=name) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/input.py",
line 665, in _batch
dequeued = queue.dequeue_up_to(batch_size, name=name) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/data_flow_ops.py",
line 499, in dequeue_up_to
self._queue_ref, n=n, component_types=self._dtypes, name=name) File
"/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_data_flow_ops.py",
line 1402, in _queue_dequeue_up_to_v2
timeout_ms=timeout_ms, name=name) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py",
line 763, in apply_op
op_def=op_def) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py",
line 2327, in create_op
original_op=self._default_original_op, op_def=op_def) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py",
line 1226, in init
self._traceback = _extract_stack()
OutOfRangeError (see above for traceback): FIFOQueue
'_6_batch/fifo_queue' is closed and has insufficient elements
(requested 32, current size 0) [[Node: batch =
QueueDequeueUpToV2[component_types=[DT_UINT8, DT_INT64, DT_STRING,
DT_STRING], timeout_ms=-1,
_device="/job:localhost/replica:0/task:0/cpu:0"](batch/fifo_queue, batch/n)]]
To find out more about why your job exited please check the logs:
https://console.cloud.google.com/logs/viewer?...
After extensive study and reading on Github, many reported that eliminating this issue was a matter of making sure that the initializer for local and global variables is run at the top of the session. Like this one Using the following:
tf.group(tf.local_variables_initializer(), tf.global_variables_initializer{}
However, that did not fix the issue for many (including me), and I suspect for those that it did work, there were other problems leading to an empty FIFO queue.
After much reading, it appears that this is a defect for which there is not an obvious fix. Several work arounds are proposed. I was running a full cycle of train, eval, and predict. Here is the approach which worked for me:
1) On training, I set num_epochs=None. This cycles through the data an infinite number of times and if the documentation is correct, each example is presented only once per epoch. I did spot checking to confirm this, but my dataset was too large to guarantee the docs are correct. That said, my model did not overfit. Train, test, and validation were all reasonably close in terms of accuracy.
2) On eval, I was building a 15 model ensemble and I wanted to compare the proposal selection to ground truth before submitting unlabeled data for validation. I kept an extra hold out set from a k-fold cross validation run and needed to be sure that the each example in the hold out set was predicted once and only once. So to make that work, I: a)set num_epochs=1, b) eliminated all calculations from the eval graph except the prediction, c) reduced the size of the eval set to ~3000 examples, d) set shuffle_batch=False, e) set the batch size so that the queue would have a few extra examples
With these conditions, the queue runners did not run out of examples before my graph completed and I got my test set
3) On predict, I used the same technique again as for eval except that I chose a batch size and number of train steps that was exactly equal to the number of predict records. Since there was no gradient back prop, the predicts were fast enough to finish before the queue runner could kill my job.
Problem solved. Jury rigged. But, it worked. Desperation is the mother of ingenuity or something like that!

Tensorflow: working tf.while_loop does not work as part of Dataset API input pipeline

My problem is an image keypoint recognition task on images of snails. I have found that although there are many prewritten image augmentation functions for classification tasks (such as Keras' ImageDataGenerator), there are none that I can find suitable for this problem, which requires changes to the output keypoints to match the random transformations of the image. Hence I am writing my own to be mapped onto the dataset as it is read from TFRecord.
The logic I am using involves a while loop which continues to generate random transformations (rotation + shift + zoom etc.) and apply them the real keypoints until it finds a set of transformations where the keypoints fit into the image. This is to avoid transformations that leave part of the snail outside the image. It would then apply those same transformations to the image and return them.
My problem is that, while I have successfully got this augmentation function to work on a single test set of keypoints, when I use the same function as part of my input pipeline, it does not work, throwing the following error: 'Merge can not have more than one valid input' (full trace included at end). I have not been able to find an explanation anywhere.
# Defining cond argument to while loop.'ph' are placeholders to match numbers of arguments for tf.while_loop
def not_fit_in_image(landmarks, ph2, ph3, ph4, ph5, ph6):
# tf logical operators to find if landmarks fit in image
return landmarks_not_fit_in_image
def augmentation_function(image, original_landmarks):
def body(ph1, ph2, ph3, ph4, ph5, ph6):
shift = tf.random_uniform([1, 2], -shift_max, shift_max, tf.float32)
landmarks = original_landmarks + shift
# More random transformations generated and applied
return landmarks, rotation, shift, zoom, y_over_x_proportion_change, shear
# placeholders to match number of arguments
ph_a = tf.constant(0, dtype=tf.float32)
landmarks, rotation, shift, zoom, y_over_x_proportion_change, shear = tf.while_loop(not_fit_in_image, body, [original_landmarks, ph_a, ph_b, ph_a, ph_a, ph_a])
# In future, would now apply these same transformations to image.
return image, landmarks
# Setting up input data pipeline using Dataset API
train = tf.data.TFRecordDataset(train_data_tfrecords).map(parse_function)
train = train.map(augmentation_function) # Using the above augmentation function
train = train.repeat().shuffle(buffer_size).batch(batch_size)
# ... Set up handle, iterator, init ops ... all works ...
with tf.Session() as sess:
train_handle = sess.run(train_iterator.string_handle())
sess.run(train_init_op)
train_images, train_landmarks = sess.run(next_batch, feed_dict={handle: train_handle})
The following error occurs:
2017-11-10 13:08:14.449612: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\35\tensorflow\core\framework\op_kernel.cc:1192] Internal: Merge can not have more than one valid input.
[[Node: while/Merge_5 = Merge[N=2, T=DT_FLOAT](while/Enter_5, while/NextIteration_5)]]
Traceback (most recent call last):
File "C:\Users\hanne\Anaconda3\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\client\session.py", line 1323, in _do_call
return fn(*args)
File "C:\Users\hanne\Anaconda3\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\client\session.py", line 1302, in _run_fn
status, run_metadata)
File "C:\Users\hanne\Anaconda3\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 473, in __exit__
c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.InternalError: Merge can not have more than one valid input.
[[Node: while/Merge_5 = Merge[N=2, T=DT_FLOAT](while/Enter_5, while/NextIteration_5)]]
[[Node: IteratorGetNext = IteratorGetNext[output_shapes=[[?,384,384], [?,15,2]], output_types=[DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](IteratorFromStringHandle)]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "C:/Users/hanne/Documents/Tensorflow Projects/Snails/random_rotations_working_while_loop_experiments.py", line 143, in <module>
train_images, train_landmarks = sess.run(next_batch, feed_dict={handle: train_handle})
File "C:\Users\hanne\Anaconda3\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\client\session.py", line 889, in run
run_metadata_ptr)
File "C:\Users\hanne\Anaconda3\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\client\session.py", line 1120, in _run
feed_dict_tensor, options, run_metadata)
File "C:\Users\hanne\Anaconda3\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\client\session.py", line 1317, in _do_run
options, run_metadata)
File "C:\Users\hanne\Anaconda3\envs\tensorflow-gpu\lib\site-packages\tensorflow\python\client\session.py", line 1336, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InternalError: Merge can not have more than one valid input.
[[Node: while/Merge_5 = Merge[N=2, T=DT_FLOAT](while/Enter_5, while/NextIteration_5)]]
[[Node: IteratorGetNext = IteratorGetNext[output_shapes=[[?,384,384], [?,15,2]], output_types=[DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](IteratorFromStringHandle)]]
This is my first time asking a question on stack overflow, so any comments about how to write better questions are also very welcome! I have tried to strip down the code above as much as I can for brevity and it is hence minimal but NOT complete or verifiable - let me know if I should include more code.
EDIT
I was able to figure out what was wrong! tf.while_loop acts like a python while loop, checking the condition before each run of 'body', which includes THE VERY FIRST RUN. The argument 'loop_vars' takes the variables for this first check. I had entered placeholder values of the wrong format to 'loop_vars', which caused the error above. A good way around this, which worked for me, is to enter the result of a first run of 'body' to the loop_vars variable, as this is assured of being of the right form.

tensorflow: ValueError: GraphDef cannot be larger than 2GB

This is the error i got
Traceback (most recent call last):
File "fully_connected_feed.py", line 387, in <module>
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
File "/home/-/.local/lib/python2.7/site-
packages/tensorflow/python/platform/app.py", line 44, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "fully_connected_feed.py", line 289, in main
run_training()
File "fully_connected_feed.py", line 256, in run_training
saver.save(sess, checkpoint_file, global_step=step)
File "/home/-/.local/lib/python2.7/site-
packages/tensorflow/python/training/saver.py", line 1386, in save
self.export_meta_graph(meta_graph_filename)
File "/home/-/.local/lib/python2.7/site-
packages/tensorflow/python/training/saver.py", line 1414, in export_meta_graph
graph_def=ops.get_default_graph().as_graph_def(add_shapes=True),
File "/home/-/.local/lib/python2.7/site-
packages/tensorflow/python/framework/ops.py", line 2257, in as_graph_def
result, _ = self._as_graph_def(from_version, add_shapes)
File "/home/-/.local/lib/python2.7/site-
packages/tensorflow/python/framework/ops.py", line 2220, in _as_graph_def
raise ValueError("GraphDef cannot be larger than 2GB.")
ValueError: GraphDef cannot be larger than 2GB.
I believe it is from the result of this code
weights = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="hidden1")[0]
weights = tf.scatter_nd_update(weights,indices, updates)
weights = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="hidden2")[0]
weights = tf.scatter_nd_update(weights,indices, updates)
I am not sure why my model is getting so big in size (15k steps and 240MB). Any thoughts? thanks!
It's hard to say what is happening without seeing the code, but in general TensorFlow model sizes will not increase with number of steps - they should be fixed.
If the model size is increasing with number of steps, it suggests that the computation graph is being added to on every step. For example, something like:
import tensorflow as tf
with tf.Session() as sess:
for i in xrange(1000):
sess.run(tf.add(1, 2))
# or perhaps sess.run(tf.scatter_nd_update(...)) in your case
will create 3000 nodes in the graph (one for add, one for '1' one for '2' on every iteration). Instead, you want to define your computational graph once and run repeatedly with something like:
import tensorflow as tf
x = tf.add(1, 2)
# or perhaps x = tf.scatter_nd_update(...) in your case
with tf.Session() as sess:
for i in xrange(1000):
sess.run(x)
Which will have a fixed graph of 3 nodes for all the 1000 (and any more) iterations. Hope that helps.

TensorFlow: InternalError: Blas SGEMM launch failed

When I run sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) I get InternalError: Blas SGEMM launch failed. Here is the full error and stack trace:
InternalErrorTraceback (most recent call last)
<ipython-input-9-a3261a02bdce> in <module>()
1 batch_xs, batch_ys = mnist.train.next_batch(100)
----> 2 sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict, options, run_metadata)
338 try:
339 result = self._run(None, fetches, feed_dict, options_ptr,
--> 340 run_metadata_ptr)
341 if run_metadata:
342 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _run(self, handle, fetches, feed_dict, options, run_metadata)
562 try:
563 results = self._do_run(handle, target_list, unique_fetches,
--> 564 feed_dict_string, options, run_metadata)
565 finally:
566 # The movers are no longer used. Delete them.
/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
635 if handle is None:
636 return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
--> 637 target_list, options, run_metadata)
638 else:
639 return self._do_call(_prun_fn, self._session, handle, feed_dict,
/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _do_call(self, fn, *args)
657 # pylint: disable=protected-access
658 raise errors._make_specific_exception(node_def, op, error_message,
--> 659 e.code)
660 # pylint: enable=protected-access
661
InternalError: Blas SGEMM launch failed : a.shape=(100, 784), b.shape=(784, 10), m=100, n=10, k=784
[[Node: MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/gpu:0"](_recv_Placeholder_0/_4, Variable/read)]]
Caused by op u'MatMul', defined at:
File "/usr/lib/python2.7/runpy.py", line 162, in _run_module_as_main
"__main__", fname, loader, pkg_name)
File "/usr/lib/python2.7/runpy.py", line 72, in _run_code
exec code in run_globals
File "/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py", line 3, in <module>
app.launch_new_instance()
File "/usr/local/lib/python2.7/dist-packages/traitlets/config/application.py", line 596, in launch_instance
app.start()
File "/usr/local/lib/python2.7/dist-packages/ipykernel/kernelapp.py", line 442, in start
ioloop.IOLoop.instance().start()
File "/usr/local/lib/python2.7/dist-packages/zmq/eventloop/ioloop.py", line 162, in start
super(ZMQIOLoop, self).start()
File "/usr/local/lib/python2.7/dist-packages/tornado/ioloop.py", line 883, in start
handler_func(fd_obj, events)
File "/usr/local/lib/python2.7/dist-packages/tornado/stack_context.py", line 275, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/zmq/eventloop/zmqstream.py", line 440, in _handle_events
self._handle_recv()
File "/usr/local/lib/python2.7/dist-packages/zmq/eventloop/zmqstream.py", line 472, in _handle_recv
self._run_callback(callback, msg)
File "/usr/local/lib/python2.7/dist-packages/zmq/eventloop/zmqstream.py", line 414, in _run_callback
callback(*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/tornado/stack_context.py", line 275, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/ipykernel/kernelbase.py", line 276, in dispatcher
return self.dispatch_shell(stream, msg)
File "/usr/local/lib/python2.7/dist-packages/ipykernel/kernelbase.py", line 228, in dispatch_shell
handler(stream, idents, msg)
File "/usr/local/lib/python2.7/dist-packages/ipykernel/kernelbase.py", line 391, in execute_request
user_expressions, allow_stdin)
File "/usr/local/lib/python2.7/dist-packages/ipykernel/ipkernel.py", line 199, in do_execute
shell.run_cell(code, store_history=store_history, silent=silent)
File "/usr/local/lib/python2.7/dist-packages/IPython/core/interactiveshell.py", line 2723, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "/usr/local/lib/python2.7/dist-packages/IPython/core/interactiveshell.py", line 2825, in run_ast_nodes
if self.run_code(code, result):
File "/usr/local/lib/python2.7/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-4-d7414c4b6213>", line 4, in <module>
y = tf.nn.softmax(tf.matmul(x, W) + b)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/math_ops.py", line 1036, in matmul
name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_math_ops.py", line 911, in _mat_mul
transpose_b=transpose_b, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/op_def_library.py", line 655, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2154, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1154, in __init__
self._traceback = _extract_stack()
Stack: EC2 g2.8xlarge machine, Ubuntu 14.04
Old question, but may help others.
Try to close interactive sessions active in other processes (if IPython Notebook - just restart kernels). This helped me!
Additionally, I use this code to close local sessions in this kernel during experiments:
if 'session' in locals() and session is not None:
print('Close interactive session')
session.close()
I encountered this problem and solved it by setting allow_soft_placement=True and gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3), which specifically define the fraction of memory of GPU been used. I guess this has helped to avoid two tensorflow processes competing for the GPU memory.
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3)
sess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True, log_device_placement=True))
I got this error when running Tensorflow Distributed. Did you check if any of the workers were reporting CUDA_OUT_OF_MEMORY errors? If this is the case it may have to do with where you place your weight and bias variables. E.g.
with tf.device("/job:paramserver/task:0/cpu:0"):
W = weight_variable([input_units, num_hidden_units])
b = bias_variable([num_hidden_units])
My environment is Python 3.5, Tensorflow 0.12 and Windows 10 (no Docker). I am training neural networks in both CPU and GPU. I came across the same error InternalError: Blas SGEMM launch failed whenever training in the GPU.
I could not find the reason why this error happens but I managed to run my code in the GPU by avoiding the tensorflow function tensorflow.contrib.slim.one_hot_encoding(). Instead, I do the one-hot-encoding operation in numpy (input and output variables).
The following code reproduces the error and the fix. It is a minimal setup to learn the y = x ** 2 function using gradient descent.
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
def test_one_hot_encoding_using_tf():
# This function raises the "InternalError: Blas SGEMM launch failed" when run in the GPU
# Initialize
tf.reset_default_graph()
input_size = 10
output_size = 100
input_holder = tf.placeholder(shape=[1], dtype=tf.int32, name='input')
output_holder = tf.placeholder(shape=[1], dtype=tf.int32, name='output')
# Define network
input_oh = slim.one_hot_encoding(input_holder, input_size)
output_oh = slim.one_hot_encoding(output_holder, output_size)
W1 = tf.Variable(tf.random_uniform([input_size, output_size], 0, 0.01))
output_v = tf.matmul(input_oh, W1)
output_v = tf.reshape(output_v, [-1])
# Define updates
loss = tf.reduce_sum(tf.square(output_oh - output_v))
trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
update_model = trainer.minimize(loss)
# Optimize
init = tf.initialize_all_variables()
steps = 1000
# Force CPU/GPU
config = tf.ConfigProto(
# device_count={'GPU': 0} # uncomment this line to force CPU
)
# Launch the tensorflow graph
with tf.Session(config=config) as sess:
sess.run(init)
for step_i in range(steps):
# Get sample
x = np.random.randint(0, 10)
y = np.power(x, 2).astype('int32')
# Update
_, l = sess.run([update_model, loss], feed_dict={input_holder: [x], output_holder: [y]})
# Check model
print('Final loss: %f' % l)
def test_one_hot_encoding_no_tf():
# This function does not raise the "InternalError: Blas SGEMM launch failed" when run in the GPU
def oh_encoding(label, num_classes):
return np.identity(num_classes)[label:label + 1].astype('int32')
# Initialize
tf.reset_default_graph()
input_size = 10
output_size = 100
input_holder = tf.placeholder(shape=[1, input_size], dtype=tf.float32, name='input')
output_holder = tf.placeholder(shape=[1, output_size], dtype=tf.float32, name='output')
# Define network
W1 = tf.Variable(tf.random_uniform([input_size, output_size], 0, 0.01))
output_v = tf.matmul(input_holder, W1)
output_v = tf.reshape(output_v, [-1])
# Define updates
loss = tf.reduce_sum(tf.square(output_holder - output_v))
trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
update_model = trainer.minimize(loss)
# Optimize
init = tf.initialize_all_variables()
steps = 1000
# Force CPU/GPU
config = tf.ConfigProto(
# device_count={'GPU': 0} # uncomment this line to force CPU
)
# Launch the tensorflow graph
with tf.Session(config=config) as sess:
sess.run(init)
for step_i in range(steps):
# Get sample
x = np.random.randint(0, 10)
y = np.power(x, 2).astype('int32')
# One hot encoding
x = oh_encoding(x, 10)
y = oh_encoding(y, 100)
# Update
_, l = sess.run([update_model, loss], feed_dict={input_holder: x, output_holder: y})
# Check model
print('Final loss: %f' % l)
maybe you not free your gpu rigthly , if you are using linux,try "ps -ef | grep python" to see what jobs are using GPU. then kill them
In my case, I had 2 python consoles open, both using keras/tensorflow.
As I closed the old console (forgotten from previous day),
everything started to work correctly.
So it is good to check, if you do not have multiple consoles / processes occupying GPU.
I closed all other Jupyter Sessions running and this solved the problem. I think It was GPU memory issue.
In my case,
First, I run
conda clean --all
to clean up tarballs and unused packages.
Then, I restart IDE (Pycharm in this case) and it works well. Environment: anaconda python 3.6, windows 10 64bit. I install tensorflow-gpu by a command provided on the anaconda website.
For me, I got this problem when I tried to run multiple tensorflow processes (e.g. 2) and both of them require to access GPU resources.
A simple solution is to make sure there has to be only one tensorflow process running at a single time.
For more details, you can see here.
To be clear, tensorflow will try (by default) to consume all available
GPUs. It cannot be run with other programs also active. Closing. Feel
free to reopen if this is actually another problem.
2.0 Compatible Answer: Providing 2.0 Code for erko's answer for the benefit of the Community.
session = tf.compat.v1.Session()
if 'session' in locals() and session is not None:
print('Close interactive session')
session.close()
In my case, the network filesystem under which libcublas.so was located simply died. The node was rebooted and everything was fine. Just to add another point to the dataset.
I encountered this error when running Keras CuDNN tests in parallel with pytest-xdist. The solution was to run them serially.
For me, I got this error when using Keras, and Tensorflow was the the backend. It was because the deep learning environment in Anaconda was not activated properly, as a result, Tensorflow didn't kick in properly either. I noticed this since the last time I activated my deep learning environment (which is called dl), the prompt changed in my Anaconda Prompt to this:
(dl) C:\Users\georg\Anaconda3\envs\dl\etc\conda\activate.d>set "KERAS_BACKEND=tensorflow"
While it only had the dl before then. Therefore, what I did to get rid of the above error was to close my jupyter notebook and Anaconda prompt, then relaunch, for several times.
I encountered this error after changing OS to Windows 10 recently, and I never encountered this before when using windows 7.
The error occurs if I load my GPU Tensorflow model when an another GPU program is running; it's my JCuda model loaded as socket server, which is not large. If I close my other GPU program(s), this Tensorflow model can be loaded very successfully.
This JCuda program is not large at all, just around 70M, and in comparison this Tensorflow model is more than 500M and much larger. But I am using 1080 ti, which has much memory. So it would be probably not an out-of-memory progblem, and it would perhaps be some tricky internal issue of Tensorflow regarding OS or Cuda. (PS: I am using Cuda version 8.0.44 and haven't downloaded a newer version.)
Restarting my Jupyter processes wasn't enough; I had to reboot my computer.
In my case, it is enough to open the Jupyter Notebooks in separate servers.
This error only occurs with me if I try using more than one tensorflow/keras model in the same server. It doesn't matter if open one notebook, execute it, than close and try opening another. If they are being loaded in the same Jupyter server the error always happens.