I have a seaborn boxplot (sns.boxplot) on which I would like to add some points. For example, say I have this pandas DataFrame:
[In] import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.DataFrame({'Property 1':['a']*100+['b']*100,
'Property 2': ['w', 'x', 'y', 'z']*50,
'Value': np.random.normal(size=200)})
df.head(3)
[Out] Property 1 Property 2 Value
0 a w 1.421380
1 a x -1.034465
2 a y 0.212911
[In] df.shape
[Out] (200, 3)
I can easily generate a boxplot with seaborn:
[In] sns.boxplot(x='Property 2', hue='Property 1', y='Value', data=df)
[Out]
Now say I want to add markers for a specific case in my sample. I can get close with this:
[In] specific_case = pd.DataFrame([['a', 'w', '0.5'],
['a', 'x', '0.2'],
['a', 'y', '0.1'],
['a', 'z', '0.3'],
['b', 'w', '-0.5'],
['b', 'x', '-0.2'],
['b', 'y', '0.3'],
['b', 'z', '0.5']
],
columns = df.columns
)
[In] sns.boxplot(x='Property 2', hue='Property 1', y='Value', data=df)
plt.plot(np.arange(-0.25, 3.75, 0.5),
specific_case['Value'].values, 'ro')
[Out]
That is unsatisfactory, of course.
I then used this answer that talks about getting the bBox and this tutorial about converting diplay coordinates into data coordinates to write this function:
[In] def get_x_coordinates_of_seaborn_boxplot(ax, x_or_y):
display_coordinates = []
inv = ax.transData.inverted()
for c in ax.get_children():
if type(c) == mpl.patches.PathPatch:
if x_or_y == 'x':
display_coordinates.append(
(c.get_extents().xmin+c.get_extents().xmax)/2)
if x_or_y == 'y':
display_coordinates.append(
(c.get_extents().ymin+c.get_extents().ymax)/2)
return inv.transform(tuple(display_coordinates))
That works great for my first hue, but not at all for my second:
[In] ax = sns.boxplot(x='Property 2', hue='Property 1', y='Value', data=df)
coords = get_x_coordinates_of_seaborn_boxplot(ax, 'x')
plt.plot(coords, specific_case['Value'].values, 'ro')
[Out]
How can I get the data coordinates of all my boxes?
I'm unsure about the purpose of those transformations. But it seems the real problem is just to plot the points from the specific_case at the correct positions. The xcoordinate of every boxplot is shifted by 0.2 from the whole number. (That is because bars are 0.8 wide by default, you have 2 boxes, which makes each 0.4 wide, half of that is 0.2.)
You then need to arrange the x values to fit to those of the specific_case dataframe.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.DataFrame({'Property 1':['a']*100+['b']*100,
'Property 2': ['w', 'x', 'y', 'z']*50,
'Value': np.random.normal(size=200)})
specific_case = pd.DataFrame([['a', 'w', '0.5'],
['a', 'x', '0.2'],
['a', 'y', '0.1'],
['a', 'z', '0.3'],
['b', 'w', '-0.5'],
['b', 'x', '-0.2'],
['b', 'y', '0.3'],
['b', 'z', '0.5']
], columns = df.columns )
ax = sns.boxplot(x='Property 2', hue='Property 1', y='Value', data=df)
X = np.repeat(np.atleast_2d(np.arange(4)),2, axis=0)+ np.array([[-.2],[.2]])
ax.plot(X.flatten(), specific_case['Value'].values, 'ro', zorder=4)
plt.show()
I got it figured out:
In your code do this to extract the x-coordinate based on hue. I did not do it for the y, but the logic should be the same:
Create two lists holding your x coordinate:
display_coordinates_1=[]
display_coordinates_2=[]
Inside your for loop that starts with:
for c in ax.get_children():
Use the following:
display_coordinates_1.append(c.get_extents().x0)
You need x0 for the x-coordinate of boxplots under first hue.
The following gives you the x-coordinates for the subplots in the second hue. Note the use of x1 here:
display_coordinates_2.append(c.get_extents().x1)
Lastly, after you inv.transform() the two lists, make sure you select every other value, since for x-coordinates each list has 6 outputs and you want the ones at indices 0,2,4 or [::2].
Hope this helps.
Related
I would like to have a different color for each bar in pyplot histogram.
FROM THIS:
import matplotlib.pyplot as plt
plt.rcParams['font.size'] = '20'
data = ['a', 'b', 'b', 'c', 'c', 'c']
plt.hist(data);
TO THIS:
One of the options is to use pyplot.bar instead of pyplot.hist, which has the option color for each bin.
The inspiration is from:
https://stackabuse.com/change-font-size-in-matplotlib/
from collections import Counter
import matplotlib.pyplot as plt
plt.rcParams['font.size'] = '20'
data = ['a', 'b', 'b', 'c', 'c', 'c']
plt.bar( range(3), Counter(data).values(), color=['red', 'green', 'blue']);
plt.xticks(range(3), Counter(data).keys());
UPDATE:
According to #JohanC suggestion, there is additional optional using seaborn (It seems me the best option):
import seaborn as sns
sns.countplot(x=data, palette=['r', 'g', 'b'])
Also, there is a very similar question:
Have each histogram bin with a different color
I try to plot a grouped bar chart from a merged dataframe. below code the bar is stacked, how can I put it side by side just like a grouped bar chart?
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(0)
df1 = pd.DataFrame({
'key': ['A', 'B', 'C', 'D'],
'value':[ 10 ,6, 6, 8]})
df2 = pd.DataFrame({
'key': ['B', 'D', 'A', 'F'],
'value':[ 3, 5, 5, 7]})
df3 = pd.merge(df1, df2, how='inner', on=['key'])
print(df1)
print(df2)
print(df3)
fig, ax = plt.subplots(figsize=(12, 8))
b1 = ax.bar(df3['key'],df3['value_x'])
b2 = ax.bar(df3['key'],df3['value_y'])
pngname = "demo.png"
fig.savefig(pngname, dpi=fig.dpi)
print("[[./%s]]"%(pngname))
Current output:
The problem is that the x axis data is the same, in your case it aren't numbers, it are the keys: "A", "B", "C". So matplotlib stacks them one onto another.
There's a simple way around it, as some tutorials online show https://www.geeksforgeeks.org/create-a-grouped-bar-plot-in-matplotlib/.
So, what you do is basically enumerate the keys, i.e. A=1, B=2, C=3. After this, choose your desired bar width, I chose 0.4 for example. And now, shift one group of bars to the left by bar_width/2, and shift the other one to the right by bar_width/2.
Perhaps the code explains it better than I did:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(0)
df1 = pd.DataFrame({
'key': ['A', 'B', 'C', 'D'],
'value':[ 10 ,6, 6, 8]})
df2 = pd.DataFrame({
'key': ['B', 'D', 'A', 'F'],
'value':[ 3, 5, 5, 7]})
df3 = pd.merge(df1, df2, how='inner', on=['key'])
fig, ax = plt.subplots(figsize=(12, 8))
# modifications
x = np.arange(len(df3['key'])) # enumerate the keys
bar_width = 0.4 # choose bar length
b1 = ax.bar(x - bar_width/2,df3['value_x'], width=bar_width, label='value_x') # shift x values left
b2 = ax.bar(x + bar_width/2,df3['value_y'], width=bar_width, label='value_y') # shift x values right
plt.xticks(x, df3['key']) # replace x axis ticks with keys from df3.
plt.legend(['value_x', 'value_y'])
plt.show()
Result:
I have a dataset like below.
T/F
Value
category
T
1
A
F
3
B
T
5
C
F
7
A
T
8
B
...
...
...
so, I want to draw a bar chart like below. same categoy has same position
same category has same position, zero centered bar and number of F is bar below the horizontal line, T is upper bar.
How can I make this chart with matplotlib.pyplot? or other library
I need example.
One approach involves making the False values negative, and then creating a Seaborn barplot with T/F as hue. You might want to make a copy of the data if you can't change the original.
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
data = pd.DataFrame({'T/F': ['T', 'F', 'T', 'F', 'T'],
'Value': [1, 3, 5, 7, 8],
'category': ['A', 'B', 'C', 'A', 'B']})
data['Value'] = np.where(data['T/F'] == 'T', data['Value'], -data['Value'])
ax = sns.barplot(data=data, x='category', y='Value', hue='T/F', dodge=False, palette='turbo')
ax.axhline(0, lw=2, color='black')
plt.tight_layout()
plt.show()
How do I make four subplots into one figure and save it to my desktop? I'm having trouble with the input prompt where you can insert 4 different are protein sequences
import numpy as np
from matplotlib import pyplot as plt
protein_input = input('Protein Sequence: ')
protein_nospace = protein_input.strip()
# plot protein frequency and print graph
x_values = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y']
counts = defaultdict(int)
for aa in protein_nospace:
if aa in x_values:
counts[aa] += 1
else:
counts[aa] = 1
y_values = np.array([v for v in counts.values()])
plt.figure()
plt.bar(x_values, y_values)
plt.title('Amino acid Frequencies')
plt.xlabel('Amino Acids')
plt.ylabel('Frequency')
plt.show()
You could create a subplot for each of the proteins. Matplotlib object-oriented interface helps to write everything into its subplot. plt.savefig saves the plot to a file.
In general, it is not a good idea to read this type of input with an interactive session. That way, you can't easily check for errors, nor can you easily reference the input later to verify how the plot was created.
For short scripts and short inputs, the easiest is to just copy-paste your input into the code. And then save the code for later reference. For longer inputs, or to have the same graph with other input sets, you can save only the strings in separate files.
The code below now shows how the input can be read interactively. (In the comment there is a version with "hard-coded" inputs.)
from matplotlib import pyplot as plt
from collections import defaultdict
protein_input_list = []
while True:
protein_input = input('Enter next Protein Sequences (empty input to stop):')
protein_nospace = protein_input.strip()
if len(protein_nospace) == 0:
break
else:
protein_input_list.append(protein_nospace)
'''
protein_input_list = ['ABABDEADWDSWEFAECD',
'DEFSDMDSLHEWVOIHWEAAEHRG',
'HIWEORMLSDAWEEFWEFWEEWJK',
'JLSSFSFLIWIJOWHOE']
'''
fig, axes = plt.subplots(ncols=len(protein_input_list), figsize=(15, 5))
for index, ( ax, protein_nospace) in enumerate( zip(axes.ravel(), protein_input_list)):
x_values = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y']
counts = defaultdict(int)
for aa in protein_nospace:
if aa in x_values:
counts[aa] += 1
else:
counts[aa] = 1
ax.bar(counts.keys(), counts.values())
ax.set_title(f'Amino acid Frequencies {index+1}')
ax.set_xlabel('Amino Acids')
ax.set_ylabel('Frequency')
plt.savefig('Amino acid Frequencies.png')
plt.show()
Is there a simply way to specify bar colors by column name using Pandas DataFrame.plot(kind='bar') method?
I have a script that generates multiple DataFrames from several different data files in a directory. For example it does something like this:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pds
data_files = ['a', 'b', 'c', 'd']
df1 = pds.DataFrame(np.random.rand(4,3), columns=data_files[:-1])
df2 = pds.DataFrame(np.random.rand(4,3), columns=data_files[1:])
df1.plot(kind='bar', ax=plt.subplot(121))
df2.plot(kind='bar', ax=plt.subplot(122))
plt.show()
With the following output:
Unfortunately, the column colors aren't consistent for each label in the different plots. Is it possible to pass in a dictionary of (filenames:colors), so that any particular column always has the same color. For example, I could imagine creating this by zipping up the filenames with the Matplotlib color_cycle:
data_files = ['a', 'b', 'c', 'd']
colors = plt.rcParams['axes.color_cycle']
print zip(data_files, colors)
[('a', u'b'), ('b', u'g'), ('c', u'r'), ('d', u'c')]
I could figure out how to do this directly with Matplotlib: I just thought there might be a simpler, built-in solution.
Edit:
Below is a partial solution that works in pure Matplotlib. However, I'm using this in an IPython notebook that will be distributed to non-programmer colleagues, and I'd like to minimize the amount of excessive plotting code.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pds
data_files = ['a', 'b', 'c', 'd']
mpl_colors = plt.rcParams['axes.color_cycle']
colors = dict(zip(data_files, mpl_colors))
def bar_plotter(df, colors, sub):
ncols = df.shape[1]
width = 1./(ncols+2.)
starts = df.index.values - width*ncols/2.
plt.subplot(120+sub)
for n, col in enumerate(df):
plt.bar(starts + width*n, df[col].values, color=colors[col],
width=width, label=col)
plt.xticks(df.index.values)
plt.grid()
plt.legend()
df1 = pds.DataFrame(np.random.rand(4,3), columns=data_files[:-1])
df2 = pds.DataFrame(np.random.rand(4,3), columns=data_files[1:])
bar_plotter(df1, colors, 1)
bar_plotter(df2, colors, 2)
plt.show()
You can pass a list as the colors. This will require a little bit of manual work to get it to line up, unlike if you could pass a dictionary, but may be a less cluttered way to accomplish your goal.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pds
data_files = ['a', 'b', 'c', 'd']
df1 = pds.DataFrame(np.random.rand(4,3), columns=data_files[:-1])
df2 = pds.DataFrame(np.random.rand(4,3), columns=data_files[1:])
color_list = ['b', 'g', 'r', 'c']
df1.plot(kind='bar', ax=plt.subplot(121), color=color_list)
df2.plot(kind='bar', ax=plt.subplot(122), color=color_list[1:])
plt.show()
EDIT
Ajean came up with a simple way to return a list of the correct colors from a dictionary:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pds
data_files = ['a', 'b', 'c', 'd']
color_list = ['b', 'g', 'r', 'c']
d2c = dict(zip(data_files, color_list))
df1 = pds.DataFrame(np.random.rand(4,3), columns=data_files[:-1])
df2 = pds.DataFrame(np.random.rand(4,3), columns=data_files[1:])
df1.plot(kind='bar', ax=plt.subplot(121), color=map(d2c.get,df1.columns))
df2.plot(kind='bar', ax=plt.subplot(122), color=map(d2c.get,df2.columns))
plt.show()
Pandas version 1.1.0 makes this easier. You can pass a dictionary to specify different color for each column in the pandas.DataFrame.plot.bar() function:
Here is an example:
df1 = pd.DataFrame({'a': [1.2, .8, .9], 'b': [.2, .9, .7]})
df2 = pd.DataFrame({'b': [0.2, .5, .4], 'c': [.5, .6, .7], 'd': [1.1, .6, .7]})
color_dict = {'a':'green', 'b': 'red', 'c':'blue', 'd': 'cyan'}
df1.plot.bar(color = color_dict)
df2.plot.bar(color = color_dict)