tensorflow NameError: name 'eval_input_fn' is not defined - tensorflow

I am following tensorflow's getting started. I downloaded and installed anaconda today. when run, the program below produces:
File "p3.py", line 35, in <module>
eval_loss = estimator.evaluate(input_fn=eval_input_fn)
NameError: name 'eval_input_fn' is not defined
import numpy as np
import tensorflow as tf
# Declare list of features, we only have one real-valued feature
def model(features, labels, mode):
# Build a linear model and predict values
W = tf.get_variable("W", [1], dtype=tf.float64)
b = tf.get_variable("b", [1], dtype=tf.float64)
y = W*features['x'] + b
# Loss sub-graph
loss = tf.reduce_sum(tf.square(y - labels))
# Training sub-graph
global_step = tf.train.get_global_step()
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = tf.group(optimizer.minimize(loss),
tf.assign_add(global_step, 1))
# ModelFnOps connects subgraphs we built to the
# appropriate functionality.
return tf.contrib.learn.ModelFnOps(
mode=mode, predictions=y,
loss=loss,
train_op=train)
estimator = tf.contrib.learn.Estimator(model_fn=model)
# define our data sets
x_train = np.array([1., 2., 3., 4.])
y_train = np.array([0., -1., -2., -3.])
x_eval = np.array([2., 5., 8., 1.])
y_eval = np.array([-1.01, -4.1, -7, 0.])
input_fn = tf.contrib.learn.io.numpy_input_fn({"x": x_train}, y_train, 4, num_epochs=1000)
# train
estimator.fit(input_fn=input_fn, steps=1000)
# Here we evaluate how well our model did.
train_loss = estimator.evaluate(input_fn=input_fn)
eval_loss = estimator.evaluate(input_fn=eval_input_fn) #line 35
print("train loss: %r"% train_loss)
print("eval loss: %r"% eval_loss)

For some reason you haven't copy-pasted the definition of the evaluation input function.
You can find it directly in the tutorial you linked.
Here's the line
eval_input_fn = tf.contrib.learn.io.numpy_input_fn(
{"x":x_eval}, y_eval, batch_size=4, num_epochs=1000)

Related

"No gradients provided for any variable" error when trying to use GradientTape mechanism

I'm trying to use GradientTape mechanism for the first time. I've looked at some examples but I'm getting the "No gradients provided for any variable" error and was wondering how to overcome this?
I want to define some complex loss functions, so I tried using GradientTape to produce its gradient for the CNN training. What was I doing wrong and can I fix it?
Attached is a run-able example code that demonstrates my problem:
# imports
import numpy as np
import tensorflow as tf
import sklearn
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
tf.config.run_functions_eagerly(True)
#my loss function
def my_loss_fn(y_true, y_pred):
` # train SVM classifier
VarC=1E6
VarGamma='scale'
clf = SVC(kernel='rbf', C=VarC, gamma=VarGamma, probability=True )
clf.fit(y_pred, y_true)
y_pred = clf.predict_proba(y_pred)
scce = tf.keras.losses.SparseCategoricalCrossentropy()
return scce(y_true, y_pred)
`
#creating inputs to demontration
X0=0.5*np.ones((12,12))
X0[2:12:4,:]=0
X0[3:12:4,:]=0
X1=0.5*np.ones((12,12))
X1[1:12:4,:]=0
X1[2:12:4,:]=0
X1=np.transpose(X1)
X=np.zeros((2000,12,12))
for i in range(0,1000):
X[i]=X0+np.random.rand(12,12)
for i in range(1000,2000):
X[i]=X1+np.random.rand(12,12)
y=np.zeros(2000, dtype=int)
y[1000:2000]=1
x_train, x_val, y_train, y_val = train_test_split(X, y, train_size=0.5)
x_val, x_test, y_val, y_test = train_test_split(x_val, y_val, train_size=0.5)
x_train = tf.convert_to_tensor(x_train)
x_val = tf.convert_to_tensor(x_val)
x_test = tf.convert_to_tensor(x_test)
y_train = tf.convert_to_tensor(y_train)
y_val = tf.convert_to_tensor(y_val)
y_test = tf.convert_to_tensor(y_test)
inputs = keras.Input((12,12,1), name='images')
x0 = tf.keras.layers.Conv2D(8,4,strides=4)(inputs)
x0 = tf.keras.layers.AveragePooling2D(pool_size=(3, 3), name='pooling')(x0)
outputs = tf.keras.layers.Flatten(name='predictions')(x0)
model = keras.Model(inputs=inputs, outputs=outputs)
optimizer=tf.keras.optimizers.Adam(learning_rate=0.001)
# Instantiate a loss function.
loss_fn = my_loss_fn
# Prepare the training dataset.
batch_size = 256
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(batch_size)
epochs = 100
for epoch in range(epochs):
print('Start of epoch %d' % (epoch,))
# Iterate over the batches of the dataset.
for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
# Open a GradientTape to record the operations run
# during the forward pass, which enables autodifferentiation.
with tf.GradientTape() as tape:
tape.watch(model.trainable_weights)
# Run the forward pass of the layer.
# The operations that the layer applies
# to its inputs are going to be recorded
# on the GradientTape.
logits = model(x_batch_train, training=True) # Logits for this minibatch
# Compute the loss value for this minibatch.
loss_value = loss_fn(y_batch_train, logits)
# Use the gradient tape to automatically retrieve
# the gradients of the trainable variables with respect to the loss.
grads = tape.gradient(loss_value, model.trainable_weights)
# Run one step of gradient descent by updating
# the value of the variables to minimize the loss.
optimizer.apply_gradients(zip(grads, model.trainable_weights))
# Log every 200 batches.
if step % 200 == 0:
print('Training loss (for one batch) at step %s: %s' % (step, float(loss_value)))
print('Seen so far: %s samples' % ((step + 1) * 64))
And when running, I get:
ValueError: No gradients provided for any variable: (['conv2d_2/kernel:0', 'conv2d_2/bias:0'],). Provided grads_and_vars is ((None, <tf.Variable 'conv2d_2/kernel:0' shape=(4, 4, 1, 8) dtype=float32, nump
If I use some standard loss function:
For example the following model and loss function
inputs = keras.Input((12,12,1), name='images')
x0 = tf.keras.layers.Conv2D(8,4,strides=4)(inputs)
x0 = tf.keras.layers.AveragePooling2D(pool_size=(3, 3), name='pooling')(x0)
x0 = tf.keras.layers.Flatten(name='features')(x0)
x0 = layers.Dense(16, name='meta_features')(x0)
outputs = layers.Dense(2, name='predictions')(x0)
model = keras.Model(inputs=inputs, outputs=outputs)
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
Everything works fine and converges well.
What am I doing wrong and can I fix it?

ValueError: No gradients provided for any variable in my custom loss - Why?

Here is my code (you can copy and paste to execute it)
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import MinMaxScaler
x = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]).astype(np.float32)
y = np.array([[-1], [3], [7], [-2]]).astype(np.float32)
# scale x and y
x_scaler = MinMaxScaler()
x_scaler.fit(x)
x_sc = x_scaler.transform(x)
y_scaler = MinMaxScaler()
y_scaler.fit(y)
y_sc = y_scaler.transform(y)
batch_size = 2
ds = tf.data.Dataset.from_tensor_slices((x_sc, y_sc)).batch(batch_size=batch_size)
# create the model
model = tf.keras.Sequential(
[
tf.keras.layers.Input(shape=(2,)),
tf.keras.layers.Dense(units=3, activation='relu'),
tf.keras.layers.Dense(units=1)
]
)
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
def standard_loss(y_batch, y_pred, y_min_max):
batches = y_pred.shape[0]
loss = 0.0
y_true_unsc = tf.convert_to_tensor(y_min_max.inverse_transform(y_batch), tf.float32)
y_pred_unsc = tf.convert_to_tensor(y_min_max.inverse_transform(y_pred), tf.float32)
for batch in range(batches):
loss += tf.math.reduce_mean(tf.math.square(y_true_unsc[batch] - y_pred_unsc[batch]))
return loss / batches
# training loop
epochs = 1
for epoch in range(epochs):
print("\nStart of epoch %d" % (epoch, ))
for step, (x_batch, y_batch) in enumerate(ds):
with tf.GradientTape() as tape:
y_pred = model(x_batch, training=True)
loss_value = standard_loss(y_batch, y_pred, y_scaler)
grads = tape.gradient(loss_value, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
The problem is located in my cost function (standard_loss). When I don't unscale my data, all work better as below:
def standard_loss(y_batch, y_pred, y_min_max):
batches = y_pred.shape[0]
loss = 0.0
for batch in range(batches):
loss += tf.math.reduce_mean(tf.math.square(y_batch[batch] - y_pred[batch]))
return loss / batches
But when I let it as above, I got this error:
ValueError: No gradients provided for any variable: ['dense/kernel:0', 'dense/bias:0', 'dense_1/kernel:0', 'dense_1/bias:0'].
I need to unscale my data to use it for others computations.
Someone could help me understand why this happen?
EDIT 1:
The problem is due to the tape (in tf.GradientTape() as tape) which records all the operations, this series of operations by which it goes up in the opposite direction when calculating the gradient. My goal now is to figure out how to unscale my y_pred variable without the "tape" saving it and going astray when calculating the gradient. Ideas?
EDIT 2:
In my custom loss my unscale operation is a numpy operation and this operation is not recorded by "tape" since we go out of the tensorflow field. This is the reason why the error appears. So I'm going to look for a way to scale my data with a tensorflow operation in order to unscale them with a tensorflow operation.
SOLUTION :
EDIT 2 is the solution. Now, everything works perfectly.
In my custom loss my unscale operation is a numpy operation and this operation is not recorded by "tape" since we go out of the tensorflow field. This is the reason why the error appears. One solution is to use tensorflow operations to scale and unscale data in order to allow the tape to record the path. See code below,
import tensorflow as tf
import numpy as np
x = tf.convert_to_tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=tf.float32)
y = tf.convert_toètensor([[-1], [3], [7], [-2]], dtype=tf.float32)
# retrieve x and y min max
xmin, xmax = tf.reduce_min(x, axis=0), tf.reduce_max(x, axis=0)
ymin, ymax = tf.reduce_min(y, axis=0), tf.reduce_max(y, axis=0)
batch_size = 2
ds = tf.data.Dataset.from_tensor_slices((x, y)).batch(batch_size)
# create the model
model = tf.keras.Sequential(
[
tf.keras.layers.Input(shape=(2,)),
tf.keras.layers.Dense(units=3, activation='relu'),
tf.keras.layers.Dense(units=1)
]
)
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
def standard_loss(y_batch, y_pred):
# unscale y_pred (note that y_batch has never been scaled)
y_pred_unsc = y_pred * (ymax - ymin) + ymin
return tf.reduce_mean(tf.square(y_batch - y_pred_unsc)
# training loop
epochs = 1
for epoch in range(epochs):
print("\nStart of epoch %d" % (epoch, ))
for step, (x_batch, y_batch) in enumerate(ds):
with tf.GradientTape() as tape:
# scale data (we see that I do not quit tensorflow operations)
x_scale = (x_batch - xmin)/(xmax - xmin)
y_pred = model(x_scale, training=True)
loss_value = standard_loss(y_batch, y_pred)
grads = tape.gradient(loss_value, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))

You must feed a value for placeholder tensor 'Placeholder_2' with dtype float and shape [?,10]

I don't know why occur this problem,I have checked many times, I have feed xs and ys to feed_dict. So, what is the reason for this problem? How do I modify my code to solve these error? Below is the error log.
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder_2' with dtype float and shape [?,10]
[[node Placeholder_2 (defined at /home/jiayu/dropout.py:41) = Placeholder[dtype=DT_FLOAT, shape=[?,10], _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
[[{{node Mean_5/_55}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_271_Mean_5", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
This code run on ubuntu 16.04, tensorflow 1.12.0 and python 3.6.8.
from __future__ import print_function
import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer
# load data
digits = load_digits()
X = digits.data
y = digits.target
y = LabelBinarizer().fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3)
def add_layer(inputs, in_size, out_size, layer_name, activation_function=None, ):
# add one more layer and return the output of this layer
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, )
Wx_plus_b = tf.matmul(inputs, Weights) + biases
# here to dropout
Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b, )
tf.summary.histogram(layer_name + '/outputs', outputs)
return outputs
# define placeholder for inputs to network
keep_prob = tf.placeholder(tf.float32)
xs = tf.placeholder(tf.float32, [None, 64]) # 8x8
ys = tf.placeholder(tf.float32, [None, 10])
# add output layer
l1 = add_layer(xs, 64, 50, 'l1', activation_function=tf.nn.tanh)
prediction = add_layer(l1, 50, 10, 'l2', activation_function=tf.nn.softmax)
# the loss between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),reduction_indices=[1])) # loss
tf.summary.scalar('loss', cross_entropy)
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.Session()
merged = tf.summary.merge_all()
# summary writer goes in here
train_writer = tf.summary.FileWriter("logs/train", sess.graph)
test_writer = tf.summary.FileWriter("logs/test", sess.graph)
# tf.initialize_all_variables() no long valid from
# 2017-03-02 if using tensorflow >= 0.12
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init)
for i in range(500):
# here to determine the keeping probability
sess.run(train_step, feed_dict={xs: X_train, ys: y_train, keep_prob: 1})
if i % 50 == 0:
# record loss
train_result = sess.run(merged, feed_dict={xs: X_train, ys: y_train, keep_prob: 1})
test_result = sess.run(merged, feed_dict={xs: X_test, ys: y_test, keep_prob: 1})
train_writer.add_summary(train_result, i)
test_writer.add_summary(test_result, i)
The right result is display scale in tensorboard.
You cannot run the script more than once because otherwise you are creating nested graph
For the first run, it will run OK without any errors. But when you run it more than once, nested computation graph will be created. You can view the behavior in tensorboard, after several runs, the computation graph will get bigger and bigger, and when you try to evaluate the bigger graph, extra placeholders simply don't get data fed to them and they will give error.
Here is the simple solution. Use ft.reset_default_graph() and put it before the place where you create the graph
tf.reset_default_graph()
# define placeholder for inputs to network
keep_prob = tf.placeholder(tf.float32, name='prob')
xs = tf.placeholder(tf.float32, [None, 64], name='x_input') # 8x8
ys = tf.placeholder(tf.float32, [None, 10], name='y_input')
...
some further reading Remove nodes from graph or reset entire default graph

Cannot read predictions returned by estimator.predict in tensorflow

I am new to tensorflow and I have been following some of the documentation on how to create our own estimator and training the model. I was able to define a custom model and train the model. But when I try to predict and read the values I am unable to read the value returned by estimator.predict. Below is my code sample
import numpy as np
import tensorflow as tf
# Declare list of features, we only have one real-valued feature
def model_fn(features, labels, mode):
# Build a linear model and predict values
W = tf.get_variable("W", [1], dtype=tf.float64)
b = tf.get_variable("b", [1], dtype=tf.float64)
y = W*features['x'] + b
# Loss sub-graph
loss = tf.reduce_sum(tf.square(y - labels))
# Training sub-graph
global_step = tf.train.get_global_step()
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = tf.group(optimizer.minimize(loss),
tf.assign_add(global_step, 1))
# EstimatorSpec connects subgraphs we built to the
# appropriate functionality.
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=y,
loss=loss,
train_op=train)
estimator = tf.estimator.Estimator(model_fn=model_fn)
# define our data sets
x_train = np.array([1., 2., 3., 4.])
y_train = np.array([0., -1., -2., -3.])
x_eval = np.array([2., 5., 8., 1.])
y_eval = np.array([-1.01, -4.1, -7, 0.])
input_fn = tf.estimator.inputs.numpy_input_fn(
{"x":x_train}, y_train, batch_size=4, num_epochs=None, shuffle=True)
train_input_fn = tf.estimator.inputs.numpy_input_fn(
{"x":x_train}, y_train, batch_size=4, num_epochs=1000, shuffle=False)
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
{"x":x_eval}, y_eval, batch_size=4, num_epochs=1000, shuffle=False)
estimate_input_fn = tf.estimator.inputs.numpy_input_fn({"x": x_eval},shuffle=False)
# train
estimator.train(input_fn=input_fn, steps=1000)
# Here we evaluate how well our model did.
train_metrics = estimator.evaluate(input_fn=train_input_fn)
eval_metrics = estimator.evaluate(input_fn=eval_input_fn)
estimate_metrics = estimator.predict(input_fn=estimate_input_fn, predict_keys=['y'])
print(list(estimate_metrics))
this throws an error
Traceback (most recent call last):
File "/Users/hdattada/PycharmProjects/TensorFlowIntro/custom_model_linear.py", line 49, in <module>
predictions = list(itertools.islice(estimate_metrics, 15))
File "/Users/hdattada/.virtualenvs/tensorflow/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 339, in predict
model_fn_lib.ModeKeys.PREDICT)
File "/Users/hdattada/.virtualenvs/tensorflow/lib/python3.5/site-packages/tensorflow/python/estimator/estimator.py", line 545, in _call_model_fn
features=features, labels=labels, **kwargs)
File "/Users/hdattada/PycharmProjects/TensorFlowIntro/custom_model_linear.py", line 12, in model_fn
loss = tf.reduce_sum(tf.square(y - labels))
File "/Users/hdattada/.virtualenvs/tensorflow/lib/python3.5/site-packages/tensorflow/python/ops/math_ops.py", line 829, in binary_op_wrapper
y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y")
File "/Users/hdattada/.virtualenvs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 676, in convert_to_tensor
as_ref=False)
File "/Users/hdattada/.virtualenvs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 741, in internal_convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "/Users/hdattada/.virtualenvs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py", line 113, in _constant_tensor_conversion_function
return constant(v, dtype=dtype, name=name)
File "/Users/hdattada/.virtualenvs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/constant_op.py", line 102, in constant
tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape))
File "/Users/hdattada/.virtualenvs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/tensor_util.py", line 364, in make_tensor_proto
raise ValueError("None values not supported.")
ValueError: None values not supported.
I am using TF1.2, could someone please help me out?
The labels will be none when calling Estimator.predict, so the graph will build error when calling model_fn, you can change you model_fn as follows:
def model_fn(features, labels, mode):
# Build a linear model and predict values
W = tf.get_variable("W", [1], dtype=tf.float64)
b = tf.get_variable("b", [1], dtype=tf.float64)
y = W*features['x'] + b
loss = None
train = None
if labels is not None:
# Loss sub-graph
loss = tf.reduce_sum(tf.square(y - labels))
# Training sub-graph
global_step = tf.train.get_global_step()
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = tf.group(optimizer.minimize(loss),
tf.assign_add(global_step, 1))
# EstimatorSpec connects subgraphs we built to the
# appropriate functionality.
return tf.estimator.EstimatorSpec(
mode=mode,
predictions={"y":y},
loss=loss,
train_op=train)
Better solution is to check if you are in prediction mode and if so to exit the model_fn before you calculate the loss or any labels like this:
...
y = W*features['x'] + b
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=y)
loss = tf.reduce_sum(tf.square(y - labels))
...

TensorFlow: Why do parameters not update when GradientDescentOptimizer train step is run?

When I run the following code, it prints a constant loss at every training step; I also tried printing the parameters, which also do not change.
I can't seem to figure out why train_step, which uses a GradientDescentOptimizer, doesnt change the weights in W_fc1, b_fc1, W_fc2, and b_fc2.
I'm a beginner to machine learning so I might be missing something obvious.
(An answer for a similar question was that weights should not be initialized at zero, but the weights here are initialized with truncated normal so that cant be the problem).
import tensorflow as tf
import numpy as np
import csv
import random
with open('wine_data.csv', 'rb') as csvfile:
input_arr = list(csv.reader(csvfile, delimiter=','))
for i in range(len(input_arr)):
input_arr[i][0] = int(input_arr[i][0]) - 1 # 0 index for one hot
for j in range(1, len(input_arr[i])):
input_arr[i][j] = float(input_arr[i][j])
random.shuffle(input_arr)
training_data = np.array(input_arr[:2*len(input_arr)/3]) # train on first two thirds of data
testing_data = np.array(input_arr[2*len(input_arr)/3:]) # test on last third of data
x_train = training_data[0:, 1:]
y_train = training_data[0:, 0]
x_test = testing_data[0:, 1:]
y_test = testing_data[0:, 0]
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
x = tf.placeholder(tf.float32, shape=[None, 13], name='x')
y_ = tf.placeholder(tf.float32, shape=[None], name='y_')
y_one_hot = tf.one_hot(tf.cast(y_, tf.int32), 3) # actual y values
W_fc1 = weight_variable([13, 128])
b_fc1 = bias_variable([128])
fc1 = tf.matmul(x, W_fc1)+b_fc1
W_fc2 = weight_variable([128, 3])
b_fc2 = bias_variable([3])
y = tf.nn.softmax(tf.matmul(fc1, W_fc2)+b_fc2)
cross_entropy = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(labels=y_one_hot, logits=y))
train_step = tf.train.GradientDescentOptimizer(1e-17).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_one_hot,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in range(1000):
train_step.run(feed_dict={x: x_train, y_: y_train})
if _%10 == 0:
loss = cross_entropy.eval(feed_dict={x: x_train, y_: y_train})
print('step', _, 'loss', loss)
Thanks in advance.
From the official tensorflow documentation:
WARNING: This op expects unscaled logits, since it performs a softmax on logits internally for efficiency. Do not call this op with the output of softmax, as it will produce incorrect results.
Remove the softmax on y before feeding it into tf.nn.softmax_cross_entropy_with_logits
Also set your learning rate to something higher (like 3e-4)