Tensorflow embedding lookup with unequal sized lists - tensorflow

Hej guys,
I'm trying to project multi labeled categorical data into a dense space using embeddings.
Here's an toy example. Let's say I have four categories and want to project them into a 2D space. Furthermore I got two instances, the first one belonging to category 0 and the second one to category 1.
The code will look something like this:
sess = tf.InteractiveSession()
embeddings = tf.Variable(tf.random_uniform([4, 2], -1.0, 1.0))
sess.run(tf.global_variables_initializer())
y = tf.nn.embedding_lookup(embeddings, [0,1])
y.eval()
and return something like this:
array([[ 0.93999457, -0.83051205],
[-0.1699729 , 0.73936272]], dtype=float32)
So far, so good. Now imagine an instance belongs to two categories. The embedding lookup will return two vectors which I can reduce by mean for example:
y = tf.nn.embedding_lookup(embeddings, [[0,1],[1,2]]) # two categories
y_ = tf.reduce_mean(y, axis=1)
y_.eval()
This works just like I expect it as well. My problem now arises when instances in my batch are not belonging to the same amount of categories e.g.:
y = tf.nn.embedding_lookup(embeddings, [[0,1],[1,2,3]]) # unequal sized lists
y_ = tf.reduce_mean(y, axis=1)
y_.eval()
ValueError: Argument must be a dense tensor: [[0, 1], [1, 2, 3]] - got shape [2], but wanted [2, 2].
Any idea about how to get around this problem?

Related

Average pooling tensorflow layer with differently shaped input tensors

I have extracted the embeddings for a particular entity X from every sentence in my dataset. Where X is mentioned more than once within the same sentence, this yields an embedding for each mention: I'd like to put these through an average pooling layer to arrive at a single embedding for X in each sentence.
Simplified working example:
import tensorflow as tf
embeddings = tf.constant([[1, 1, 1],
[2, 2, 2],
[4, 4, 4],
[5, 5, 5]])
# Let's imagine rows [1, 1, 1] & [4, 4, 4]
# correspond to embeddings for X from the same sentence
# We can indicate sentence belonging through an sent_idxs variable:
sent_idxs = tf.constant([0, 1, 0, 2])
With the help of related stackoverflow questions (Torch - How to calculate average of tensors with the same indexes, Summing over specific indices PyTorch (similar to scatter_add)), I could average embeddings corresponding to the same sentence like this:
unique_idxs, _, counts = tf.unique_with_counts(sent_idxs) # counts = ([2, 1, 1])
result_holder = tf.zeros([unique_idxs.shape[0], embeddings.shape[1]], dtype= embeddings.dtype)
embeddings = tf.tensor_scatter_nd_add(result_holder, tf.expand_dims(sent_idxs, axis=1), embeddings)
embeddings /= counts[:, None]
However, I would prefer to re-shape my original embeddings to instead perform the averaging with AveragePooling2D or AveragePooling1D, and I'm really struggling with imagining the appropriate shape to enable this.

Cleaner way to whiten each image in a batch using keras

I would like to whiten each image in a batch. The code I have to do so is this:
def whiten(self, x):
shape = x.shape
x = K.batch_flatten(x)
mn = K.mean(x, 0)
std = K.std(x, 0) + K.epsilon()
r = (x - mn) / std
r = K.reshape(x, (-1,shape[1],shape[2],shape[3]))
return r
#
where x is (?, 320,320,1). I am not keen on the reshape function with a -1 arg. Is there a cleaner way to do this?
Let's see what the -1 does. From the Tensorflow documentation (Because the documentation from Keras is scarce compared to the one from Tensorflow):
If one component of shape is the special value -1, the size of that dimension is computed so that the total size remains constant.
So what this means:
from keras import backend as K
X = tf.constant([1,2,3,4,5])
K.reshape(X, [-1, 5])
# Add one more dimension, the number of columns should be 5, and keep the number of elements to be constant
# [[1 2 3 4 5]]
X = tf.constant([1,2,3,4,5,6])
K.reshape(X, [-1, 3])
# Add one more dimension, the number of columns should be 3
# For the number of elements to be constant the number of rows should be 2
# [[1 2 3]
# [4 5 6]]
I think it is simple enough. So what happens in your code:
# Let's assume we have 5 images, 320x320 with 3 channels
X = tf.ones((5, 320, 320, 3))
shape = X.shape
# Let's flat the tensor so we can perform the rest of the computation
flatten = K.batch_flatten(X)
# What this did is: Turn a nD tensor into a 2D tensor with same 0th dimension. (Taken from the documentation directly, let's see that below)
flatten.shape
# (5, 307200)
# So all the other elements were squeezed in 1 dimension while keeping the batch_size the same
# ...The rest of the stuff in your code is executed here...
# So we did all we wanted and now we want to revert the tensor in the shape it had previously
r = K.reshape(flatten, (-1, shape[1],shape[2],shape[3]))
r.shape
# (5, 320, 320, 3)
Besides, I can't think of a cleaner way to do what you want to do. If you ask me, your code is already clear enough.

Multiply certain columns of a 2D tensor by a scaler

Is their a way using tf functions to multiply certain columns of a 2D tensor by a scaler?
e.g. multiply the second and third column of a matrix by 2:
[[2,3,4,5],[4,3,4,3]] -> [[2,6,8,5],[4,6,8,3]]
Thanks for any help.
EDIT:
Thank you Psidom for the reply. Unfortunately I am not using a tf.Variable, so it seems I have to use tf.slice.
What I am trying to do is to multiply all components by 2 of a single-sided PSD, except for the DC component and the Nyquist frequency component, to conserve the total power when going from a double-sided spectrum to a single-sided spectrum.
This would correspond to: 2*PSD[:,1:-1] if it was a numpy array.
Here is my attempt with tf.assign and tf.slice:
x['PSD'] = tf.assign(tf.slice(x['PSD'], [0, 1], [tf.shape(x['PSD'])[0], tf.shape(x['PSD'])[1] - 2]),
tf.scalar_mul(2, tf.slice(x['PSD'], [0, 1], [tf.shape(x['PSD'])[0], tf.shape(x['PSD'])[1] - 2]))) # single-sided power spectral density.
However:
AttributeError: 'Tensor' object has no attribute 'assign'
If the tensor is a variable, you can do this by slicing the columns you want to update and then use tf.assign:
x = tf.Variable([[2,3,4,5],[4,3,4,3]])
x = tf.assign(x[:,1:3], x[:,1:3]*2) # update the second and third columns and assign
# the new tensor to x ​
with tf.Session() as sess:
tf.global_variables_initializer().run()
print(sess.run(x))
#[[2 6 8 5]
# [4 6 8 3]]
Ended up taking 3 different slices and concatenating them together, with the middle slice multiplied by 2. Probably not the most efficient way, but it works:
x['PSD'] = tf.concat([tf.slice(x['PSD'], [0, 0], [tf.shape(x['PSD'])[0], 1]),
tf.scalar_mul(2, tf.slice(x['PSD'], [0, 1], [tf.shape(x['PSD'])[0], tf.shape(x['PSD'])[1] - 2])),
tf.slice(x['PSD'], [0, tf.shape(x['PSD'])[1] - 1], [tf.shape(x['PSD'])[0], 1])], 1) # single-sided power spectral density.

No broadcasting for tf.matmul in TensorFlow

I have a problem with which I've been struggling. It is related to tf.matmul() and its absence of broadcasting.
I am aware of a similar issue on https://github.com/tensorflow/tensorflow/issues/216, but tf.batch_matmul() doesn't look like a solution for my case.
I need to encode my input data as a 4D tensor:
X = tf.placeholder(tf.float32, shape=(None, None, None, 100))
The first dimension is the size of a batch, the second the number of entries in the batch.
You can imagine each entry as a composition of a number of objects (third dimension). Finally, each object is described by a vector of 100 float values.
Note that I used None for the second and third dimensions because the actual sizes may change in each batch. However, for simplicity, let's shape the tensor with actual numbers:
X = tf.placeholder(tf.float32, shape=(5, 10, 4, 100))
These are the steps of my computation:
compute a function of each vector of 100 float values (e.g., linear function)
W = tf.Variable(tf.truncated_normal([100, 50], stddev=0.1))
Y = tf.matmul(X, W)
problem: no broadcasting for tf.matmul() and no success using tf.batch_matmul()
expected shape of Y: (5, 10, 4, 50)
applying average pooling for each entry of the batch (over the objects of each entry):
Y_avg = tf.reduce_mean(Y, 2)
expected shape of Y_avg: (5, 10, 50)
I expected that tf.matmul() would have supported broadcasting. Then I found tf.batch_matmul(), but still it looks like doesn't apply to my case (e.g., W needs to have 3 dimensions at least, not clear why).
BTW, above I used a simple linear function (the weights of which are stored in W). But in my model I have a deep network instead. So, the more general problem I have is automatically computing a function for each slice of a tensor. This is why I expected that tf.matmul() would have had a broadcasting behavior (if so, maybe tf.batch_matmul() wouldn't even be necessary).
Look forward to learning from you!
Alessio
You could achieve that by reshaping X to shape [n, d], where d is the dimensionality of one single "instance" of computation (100 in your example) and n is the number of those instances in your multi-dimensional object (5*10*4=200 in your example). After reshaping, you can use tf.matmul and then reshape back to the desired shape. The fact that the first three dimensions can vary makes that little tricky, but you can use tf.shape to determine the actual shapes during run time. Finally, you can perform the second step of your computation, which should be a simple tf.reduce_mean over the respective dimension. All in all, it would look like this:
X = tf.placeholder(tf.float32, shape=(None, None, None, 100))
W = tf.Variable(tf.truncated_normal([100, 50], stddev=0.1))
X_ = tf.reshape(X, [-1, 100])
Y_ = tf.matmul(X_, W)
X_shape = tf.gather(tf.shape(X), [0,1,2]) # Extract the first three dimensions
target_shape = tf.concat(0, [X_shape, [50]])
Y = tf.reshape(Y_, target_shape)
Y_avg = tf.reduce_mean(Y, 2)
As the renamed title of the GitHub issue you linked suggests, you should use tf.tensordot(). It enables contraction of axes pairs between two tensors, in line with Numpy's tensordot(). For your case:
X = tf.placeholder(tf.float32, shape=(5, 10, 4, 100))
W = tf.Variable(tf.truncated_normal([100, 50], stddev=0.1))
Y = tf.tensordot(X, W, [[3], [0]]) # gives shape=[5, 10, 4, 50]

How does tensorflow batch_matmul work?

Tensorflow has a function called batch_matmul which multiplies higher dimensional tensors. But I'm having a hard time understanding how it works, perhaps partially because I'm having a hard time visualizing it.
What I want to do is multiply a matrix by each slice of a 3D tensor, but I don't quite understand what the shape of tensor a is. Is z the innermost dimension? Which of the following is correct?
I would most prefer the first to be correct -- it's most intuitive to me and easy to see in the .eval() output. But I suspect the second is correct.
Tensorflow says that batch_matmul performs:
out[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :])
What does that mean? What does that mean in the context of my example? What is being multiplied with with what? And why aren't I getting a 3D tensor the way I expected?
You can imagine it as doing a matmul over each training example in the batch.
For example, if you have two tensors with the following dimensions:
a.shape = [100, 2, 5]
b.shape = [100, 5, 2]
and you do a batch tf.matmul(a, b), your output will have the shape [100, 2, 2].
100 is your batch size, the other two dimensions are the dimensions of your data.
First of all tf.batch_matmul() was removed and no longer available. Now you suppose to use tf.matmul():
The inputs must be matrices (or tensors of rank > 2, representing
batches of matrices), with matching inner dimensions, possibly after
transposition.
So let's assume you have the following code:
import tensorflow as tf
batch_size, n, m, k = 10, 3, 5, 2
A = tf.Variable(tf.random_normal(shape=(batch_size, n, m)))
B = tf.Variable(tf.random_normal(shape=(batch_size, m, k)))
tf.matmul(A, B)
Now you will receive a tensor of the shape (batch_size, n, k). Here is what is going on here. Assume you have batch_size of matrices nxm and batch_size of matrices mxk. Now for each pair of them you calculate nxm X mxk which gives you an nxk matrix. You will have batch_size of them.
Notice that something like this is also valid:
A = tf.Variable(tf.random_normal(shape=(a, b, n, m)))
B = tf.Variable(tf.random_normal(shape=(a, b, m, k)))
tf.matmul(A, B)
and will give you a shape (a, b, n, k)
You can now do it using tf.einsum, starting from Tensorflow 0.11.0rc0.
For example,
M1 = tf.Variable(tf.random_normal([2,3,4]))
M2 = tf.Variable(tf.random_normal([5,4]))
N = tf.einsum('ijk,lk->ijl',M1,M2)
It multiplies the matrix M2 with every frame (3 frames) in every batch (2 batches) in M1.
The output is:
[array([[[ 0.80474716, -1.38590837, -0.3379252 , -1.24965811],
[ 2.57852983, 0.05492432, 0.23039417, -0.74263287],
[-2.42627382, 1.70774114, 1.19503212, 0.43006262]],
[[-1.04652011, -0.32753903, -1.26430523, 0.8810069 ],
[-0.48935518, 0.12831448, -1.30816901, -0.01271309],
[ 2.33260512, -1.22395933, -0.92082584, 0.48991606]]], dtype=float32),
array([[ 1.71076882, 0.79229093, -0.58058828, -0.23246667],
[ 0.20446332, 1.30742455, -0.07969904, 0.9247328 ],
[-0.32047141, 0.66072595, -1.12330854, 0.80426538],
[-0.02781649, -0.29672042, 2.17819595, -0.73862702],
[-0.99663496, 1.3840003 , -1.39621222, 0.77119476]], dtype=float32),
array([[[ 0.76539308, 2.77609682, -1.79906654, 0.57580602, -3.21205115],
[ 4.49365759, -0.10607499, -1.64613271, 0.96234947, -3.38823152],
[-3.59156275, 2.03910899, 0.90939498, 1.84612727, 3.44476724]],
[[-1.52062428, 0.27325237, 2.24773455, -3.27834225, 3.03435063],
[ 0.02695178, 0.16020992, 1.70085776, -2.8645196 , 2.48197317],
[ 3.44154787, -0.59687197, -0.12784094, -2.06931567, -2.35522676]]], dtype=float32)]
I have verified, the arithmetic is correct.
tf.tensordot should solve this problem. It supports batch operations, e.g., if you want to contract a 2D tensor with a 3D tensor, with the latter having a batch dimension.
If a is shape [n,m] b is shape [?,m,l], then
y = tf.tensordot(b, a, axes=[1, 1]) will produce a tensor of shape [?,n,l]
https://www.tensorflow.org/api_docs/python/tf/tensordot
It is simply like splitting on the first dimension respectively, multiply and concat them back. If you want to do 3D by 2D, you can reshape, multiply, and reshape it back. I.e. [100, 2, 5] -> [200, 5] -> [200, 2] -> [100, 2, 2]
The answer to this particular answer is using tf.scan function.
If a = [5,3,2] #dimension of 5 batch, with 3X2 mat in each batch
and b = [2,3] # a constant matrix to be multiplied with each sample
then let def fn(a,x):
return tf.matmul(x,b)
initializer = tf.Variable(tf.random_number(3,3))
h = tf.scan(fn,outputs,initializer)
this h will store all the outputs.