Cannot run Tensorflow code multiple times in Jupyter Notebook - tensorflow

I'm struggling running Tensorflow (v1.1) code multiple times in Jupyter Notebook.
For example, I execute this simple code snippet that creates an encoding layer for a seq2seq model:
# Construct encoder layer (LSTM)
encoder_cell = tf.contrib.rnn.LSTMCell(encoder_hidden_units)
encoder_outputs, encoder_final_state = tf.nn.dynamic_rnn(
encoder_cell, encoder_inputs_embedded,
dtype=tf.float32, time_major=False
)
First time is totally fine, my encoder is created.
However, if I rerun it (no matter the changes I've applied), I get this error:
Attempt to have a second RNNCell use the weights of a variable scope that already has weights
It's very annoying as it forces me to restart the kernel every time I want to change a layer.
Can someone explain me why this happens and how I can fix this ?
Thanks!

You are trying to build the exact same graph twice and therefore TensorFlow complains because the variables already exist in the default graph.
What you could do is to call tf.reset_default_graph() before trying to call the method a second time to ensure you create a new graph when required.
Just in case, I would also suggest using an interactive session as described here in the Start TensorFlow InteractiveSession section:
import tensorflow as tf
sess = tf.InteractiveSession()

Related

Getting Gradients of Each Layer in Keras 2

It's been days that I've been struggling just to simply view layers' gradients in the debug mode of Keras2. Needless to say, I have already tried codes such as:
import Keras.backend as K
gradients = K.gradients(model.output, model.input)
sess = tf.compat.v1.keras.backend.get_session()
evaluated_gradients = sess.run(gradients, feed_dict={model.input:images})
or
evaluated_gradients = sess.run(gradients, feed_dict{model.input.experimantal_ref():images})
or
with tf.compat.v1.Session(graph=tf.compat.v1.keras.backend.get_default_graph())
or similar approaches using
tf.compat.v1
which all lead to the following error:
RuntimeError: The Session graph is empty. Add operations to the graph
before calling run().
I assume this should be the most basic tool any deep learning package could provide, it is strange why there seems no easy way to do so in Keras2. Any ideas?
You can try to do this on TF 2 with eager mode on.
Please notice that you need to use tf.keras for everything, including your model, layers, etc. For this to work you can never use keras alone, it must be tf.keras. This means, for instance, using tf.keras.layers.Dense, tf.keras.models.Sequential, etc..
input_images_tensor = tf.constant(input_images_numpy)
with tf.GradientTape() as g:
g.watch(input_images_tensor)
output_tensor = model(input_images_tensor)
gradients = g.gradient(output_tensor, input_images_tensor)
If you are going to calculate the gradients more than once with the same tape, you need the tape to be persistent=True and delete it manually after you get the gradients. (See details on the link below)
You can get the gradients regarding any "trainable" weight without needing watch. If you are going to get gradients with respect to non-trainable tensors (such as the input images), then you must call g.watch as above for each of these variables).
More details on GradientTape: https://www.tensorflow.org/api_docs/python/tf/GradientTape

Number of layers in the NN model keeps increasing every time I call a new instance of the model

I am working for a while now with tensorflow and jupyter but this is the first time I have encountered this problem. I have a NN model which has 6 layers and I get an instance of this model by calling the function "classifier"
def classifier(input_repr,prob,reuse=None):
e_l1=tf.layers.dense(inputs=input_repr,units=512,activation=tf.nn.leaky_relu)
e_l1=tf.nn.dropout(e_l1,prob)
e_l2=tf.layers.dense(inputs=e_l1,units=256,activation=tf.nn.leaky_relu)
e_l2=tf.nn.dropout(e_l2,prob)
e_l3=tf.layers.dense(inputs=e_l2,units=128,activation=tf.nn.leaky_relu)
e_l3=tf.nn.dropout(e_l3,prob)
e_l4=tf.layers.dense(inputs=e_l3,units=64,activation=tf.nn.leaky_relu)
e_l4=tf.nn.dropout(e_l4,prob)
e_l5=tf.layers.dense(inputs=e_l4,units=32,activation=tf.nn.leaky_relu)
e_l5=tf.nn.dropout(e_l5,prob)
d_l3=tf.layers.dense(inputs=e_l5,units=1,activation=tf.nn.leaky_relu)
return d_l3
I also have a function to visualize the model summary as
def model_summary():
model_vars = tf.trainable_variables()
slim.model_analyzer.analyze_vars(model_vars, print_info=True)
print(model_summary())
And i get the model instance as,
model_output=classifier(input_repr,prob)
The problem is whenever I call this, and then i call model_summary() the layers gets stacked up to the previous model. For eg, if when i call the "classifier()" for the first time, model_Summary() shows 5 layers, but when i call it again it shows 10 layers and so on. I always initialize again before calling the classifier() method but it just happens again and again. I don't know if that is some issue with jupyter. The only way I know to solve this problem is to completely restart the kernel, which leads to loss of variables.
Don't forget to reset the default graph tf.reset_default_graph() before creating your model. The issue is that the notebook is running in a single thread, and Tensorflow stacks new nodes on the graph whenever you build the graph over and over again. That's why when prototyping in Jupyter notebook, always reset the default graph when you start build a new graph.
every time you call function classifier you create additional layers, when you will create your model and compile it only use model object to model.fit and model.predict

Saving tf.trainable_variables() using convert_variables_to_constants

I have a Keras model that I would like to convert to a Tensorflow protobuf (e.g. saved_model.pb).
This model comes from transfer learning on the vgg-19 network in which and the head was cut-off and trained with fully-connected+softmax layers while the rest of the vgg-19 network was frozen
I can load the model in Keras, and then use keras.backend.get_session() to run the model in tensorflow, generating the correct predictions:
frame = preprocess(cv2.imread("path/to/img.jpg")
keras_model = keras.models.load_model("path/to/keras/model.h5")
keras_prediction = keras_model.predict(frame)
print(keras_prediction)
with keras.backend.get_session() as sess:
tvars = tf.trainable_variables()
output = sess.graph.get_tensor_by_name('Softmax:0')
input_tensor = sess.graph.get_tensor_by_name('input_1:0')
tf_prediction = sess.run(output, {input_tensor: frame})
print(tf_prediction) # this matches keras_prediction exactly
If I don't include the line tvars = tf.trainable_variables(), then the tf_prediction variable is completely wrong and doesn't match the output from keras_prediction at all. In fact all the values in the output (single array with 4 probability values) are exactly the same (~0.25, all adding to 1). This made me suspect that weights for the head are just initialized to 0 if tf.trainable_variables() is not called first, which was confirmed after inspecting the model variables. In any case, calling tf.trainable_variables() causes the tensorflow prediction to be correct.
The problem is that when I try to save this model, the variables from tf.trainable_variables() don't actually get saved to the .pb file:
with keras.backend.get_session() as sess:
tvars = tf.trainable_variables()
constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph.as_graph_def(), ['Softmax'])
graph_io.write_graph(constant_graph, './', 'saved_model.pb', as_text=False)
What I am asking is, how can I save a Keras model as a Tensorflow protobuf with the tf.training_variables() intact?
Thanks so much!
So your approach of freezing the variables in the graph (converting to constants), should work, but isn't necessary and is trickier than the other approaches. (more on this below). If your want graph freezing for some reason (e.g. exporting to a mobile device), I'd need more details to help debug, as I'm not sure what implicit stuff Keras is doing behind the scenes with your graph. However, if you want to just save and load a graph later, I can explain how to do that, (though no guarantees that whatever Keras is doing won't screw it up..., happy to help debug that).
So there are actually two formats at play here. One is the GraphDef, which is used for Checkpointing, as it does not contain metadata about inputs and outputs. The other is a MetaGraphDef which contains metadata and a graph def, the metadata being useful for prediction and running a ModelServer (from tensorflow/serving).
In either case you need to do more than just call graph_io.write_graph because the variables are usually stored outside the graphdef.
There are wrapper libraries for both these use cases. tf.train.Saver is primarily used for saving and restoring checkpoints.
However, since you want prediction, I would suggest using a tf.saved_model.builder.SavedModelBuilder to build a SavedModel binary. I've provided some boiler plate for this below:
from tensorflow.python.saved_model.signature_constants import DEFAULT_SERVING_SIGNATURE_DEF_KEY as DEFAULT_SIG_DEF
builder = tf.saved_model.builder.SavedModelBuilder('./mymodel')
with keras.backend.get_session() as sess:
output = sess.graph.get_tensor_by_name('Softmax:0')
input_tensor = sess.graph.get_tensor_by_name('input_1:0')
sig_def = tf.saved_model.signature_def_utils.predict_signature_def(
{'input': input_tensor},
{'output': output}
)
builder.add_meta_graph_and_variables(
sess, tf.saved_model.tag_constants.SERVING,
signature_def_map={
DEFAULT_SIG_DEF: sig_def
}
)
builder.save()
After running this code you should have a mymodel/saved_model.pb file as well as a directory mymodel/variables/ with protobufs corresponding to the variable values.
Then to load the model again, simply use tf.saved_model.loader:
# Does Keras give you the ability to start with a fresh graph?
# If not you'll need to do this in a separate program to avoid
# conflicts with the old default graph
with tf.Session(graph=tf.Graph()):
meta_graph_def = tf.saved_model.loader.load(
sess,
tf.saved_model.tag_constants.SERVING,
'./mymodel'
)
# From this point variables and graph structure are restored
sig_def = meta_graph_def.signature_def[DEFAULT_SIG_DEF]
print(sess.run(sig_def.outputs['output'], feed_dict={sig_def.inputs['input']: frame}))
Obviously there's a more efficient prediction available with this code through tensorflow/serving, or Cloud ML Engine, but this should work.
It's possible that Keras is doing something under the hood which will interfere with this process as well, and if so we'd like to hear about it (and I'd like to make sure that Keras users are able to freeze graphs as well, so if you want to send me a gist with your full code or something maybe I can find someone who knows Keras well to help me debug.)
EDIT: You can find an end to end example of this here: https://github.com/GoogleCloudPlatform/cloudml-samples/blob/master/census/keras/trainer/model.py#L85

Tensorflow Estimator API: Summaries

I can't achieve to make summaries work with the Estimator API of Tensorflow.
The Estimator class is very useful for many reasons: I have already implemented my own classes which are really similar but I am trying to switch to this one.
Here is the code sample:
import tensorflow as tf
import tensorflow.contrib.layers as layers
import tensorflow.contrib.learn as learn
import numpy as np
# To reproduce the error: docker run --rm -w /algo -v $(pwd):/algo tensorflow/tensorflow bash -c "python sample.py"
def model_fn(x, y, mode):
logits = layers.fully_connected(x, 12, scope="dense-1")
logits = layers.fully_connected(logits, 56, scope="dense-2")
logits = layers.fully_connected(logits, 4, scope="dense-3")
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y), name="xentropy")
return {"predictions":logits}, loss, tf.train.AdamOptimizer(0.001).minimize(loss)
def input_fun():
""" To be completed for a 4 classes classification problem """
feature = tf.constant(np.random.rand(100,10))
labels = tf.constant(np.random.random_integers(0,3, size=(100,)))
return feature, labels
estimator = learn.Estimator(model_fn=model_fn, )
trainingConfig = tf.contrib.learn.RunConfig(save_checkpoints_secs=60)
estimator = learn.Estimator(model_fn=model_fn, model_dir="./tmp", config=trainingConfig)
# Works
estimator.fit(input_fn=input_fun, steps=2)
# The following code does not work
# Can't initialize saver
# saver = tf.train.Saver(max_to_keep=10) # Error: No variables to save
# The following fails because I am missing a saver... :(
hooks=[
tf.train.LoggingTensorHook(["xentropy"], every_n_iter=100),
tf.train.CheckpointSaverHook("./tmp", save_steps=1000, checkpoint_basename='model.ckpt'),
tf.train.StepCounterHook(every_n_steps=100, output_dir="./tmp"),
tf.train.SummarySaverHook(save_steps=100, output_dir="./tmp"),
]
estimator.fit(input_fn=input_fun, steps=2, monitors=hooks)
As you can see, I can create an Estimator and use it but I can achieve to add hooks to the fitting process.
The logging hooks works just fine but the others require both tensors and a saver which I can't provide.
The tensors are defined in the model function, thus I can't pass them to the SummaryHook and the Saver can't be initialized because there is no tensor to save...
Is there a solution to my problem? (I am guessing yes but there is a lack of documentation of this part in the tensorflow documentation)
How can I initialized my saver? Or should I use other objects such as Scaffold?
How can I pass summaries to the SummaryHook since they are defined in my model function?
Thanks in advance.
PS: I have seen the DNNClassifier API but I want to use the estimator API for Convolutional Nets and others. I need to create summaries for any estimator.
The intended use case is that you let the Estimator save summaries for you. There are options in RunConfig for configuring summary writing. RunConfigs get passed when constructing the Estimator.
Just have tf.summary.scalar("loss", loss) in the model_fn, and run the code without summary_hook. The loss is recorded and shown in the tensorboard.
See also:
Tensorflow - Using tf.summary with 1.2 Estimator API

Tensorflow: How can I assign numpy pre-trained weights to subsections of graph?

This is a simple thing which I just couldn't figure out how to do.
I converted a pre-trained VGG caffe model to tensorflow using the github code from https://github.com/ethereon/caffe-tensorflow and saved it to vgg16.npy...
I then load the network to my sess default session as "net" using:
images = tf.placeholder(tf.float32, [1, 224, 224, 3])
net = VGGNet_xavier({'data': images, 'label' : 1})
with tf.Session() as sess:
net.load("vgg16.npy", sess)
After net.load, I get a graph with a list of tensors. I can access individual tensors per layer using net.layers['conv1_1']... to get weights and biases for the first VGG convolutional layer, etc.
Now suppose that I make another graph that has as its first layer "h_conv1_b":
W_conv1_b = weight_variable([3,3,3,64])
b_conv1_b = bias_variable([64])
h_conv1_b = tf.nn.relu(conv2d(im_batch, W_conv1_b) + b_conv1_b)
My question is -- how do you get to assign the pre-trained weights from net.layers['conv1_1'] to h_conv1_b ?? (both are now tensors)
I suggest you have a detailed look at network.py from the https://github.com/ethereon/caffe-tensorflow, especially the function load(). It would help you understand what happened when you called net.load(weight_path, session).
FYI, variables in Tensorflow can be assigned to a numpy array by using var.assign(np_array) which is executed in the session. Here is the solution to your question:
with tf.Session() as sess:
W_conv1_b = weight_variable([3,3,3,64])
sess.run(W_conv1_b.assign(net.layers['conv1_1'].weights))
b_conv1_b = bias_variable([64])
sess.run(b_conv1_b.assign(net.layers['conv1_1'].biases))
h_conv1_b = tf.nn.relu(conv2d(im_batch, W_conv1_b) + b_conv1_b)
I would like to kindly remind you the following points:
var.assign(data) where 'data' is a numpy array and 'var' is a TensorFlow variable should be executed in the same session where you want to continue to execute your network either inference or training.
The 'var' should be created as the same shape as the 'data' by default. Therefore, if you can obtain the 'data' before creating the 'var', I suggest you create the 'var' by the method var=tf.Variable(shape=data.shape). Otherwise, you need to create the 'var' by the method var=tf.Variable(validate_shape=False), which means the variable shape is feasible. Detailed explainations can be found in the Tensorflow's API doc.
I extend the same repo caffe-tensorflow to support theano in caffe so that I can load the transformed model from caffe in Theano. Therefore, I am a reasonable expert w.r.t this repo's code. Please feel free to get in contact with me as you have any further question.
You can get variable values using eval method of tf.Variable-s from the first network and load that values into variables of the second network using load method (also method of the tf.Variable).