How to predict size for output of SslEncryptPacket - ssl

Usually Win32 API can tell what is the length of output buffer required. One need just pass 0 as buffer length and API returns error BUFFER_TOO_SMALL and number of bytes required.
But it is not the same with SslEncryptPacket. It just returns error about small buffer and that's all.
There is also SslLookupCipherLengths which I suppose should be used for that, but documentation gives no clue about how to calculate output buffer having that info.
Maybe you can tell ? Usually I would reserve + kilobyte , but in my situation I need to know exactly.

You probably already know that in order to go through the TLS/SSL handshake, you repeatedly call SSPI->InitializeSecurityContext (on the client side) or SSPI->AcceptSecurityContext (on the server side).
Once the function returns SEC_E_OK, you should call SSPI->QueryContextAttributes with SECPKG_ATTR_STREAM_SIZES to determine the sizes of the header and trailer. It also tells you the number of SecBuffers to use for the SSPI->EncryptMessage function, and it tells you the maximum size of the message that you can pass to EncryptMessage.
As I understand, the values that are returned may vary depending on the type of encryption that the OS chooses for the connection. I'm not intimately familiar with TLS/SSL but I think it uses 5 bytes for the header, 36 for the footer and 16384 for the maximum message length. You mileage may vary, so that's why you should call QueryContextAttribute(... SECPKG_ATTR_STREAM_SIZES ...).

Related

How to extract encryption and MAC keys using KDF (X9.63) defined by javacardx.security.derivation

As per Java Card v3.1 new package is defined javacardx.security.derivation
https://docs.oracle.com/en/java/javacard/3.1/jc_api_srvc/api_classic/javacardx/security/derivation/package-summary.html
KDF X9.63 works on three inputs: input secret, counter and shared info.
Depends on length of generated key material, multiple rounds on hash is carried out to generated final output.
I am using this KDF via JC API to generated 64 bytes of output (which is carried out by 2 rounds of SHA-256) for a 16 bytes-Encryption Key, a 16 bytes-IV, and a 32 bytes-MAC Key.
Note: This is just pseudo code to put my question with necessary details.
DerivationFunction df = DerivationFunction.getInstance(DerivationFunction.ALG_KDF_ANSI_X9_63, false);
df.init(KDFAnsiX963Spec(MessageDigest.ALG_SHA_256, input, sharedInfo, (short) 64);
SecretKey encKey = KeyBuilder.buildKey(KeyBuilder.TYPE_AES, (short)16, false);
SecretKey macKey = KeyBuilder.buildKey(KeyBuilder.TYPE_HMAC, (short)32, false);
df.nextBytes(encKey);
df.nextBytes(IVBuffer, (short)0, (short)16);
df.lastBytes(macKey);
I have the following questions:
When rounds of KDF are performed? Are these performed during df.init() or during df.nextBytes() & df.lastBytes()?
One KDF round will generate 32 bytes output (considering SHA-256 algorithm) then how API's df.nextBytes() & df.lastBytes() will work with any output expected length < 32 bytes?
In this KDF counter is incremented in every next round then how counter will be managed between df.nextBytes() & df.lastBytes() API's?
When rounds of KDF are performed? Are these performed during df.init() or during df.nextBytes() & df.lastBytes()?
That seems to be implementation specific to me. It will probably be faster to perform all the calculations at one time, but in that case it still makes sense to wait for the first request of the bytes. On the other hand RAM is also often an issue, so on demand generation also makes some sense. That requires a somewhat trickier implementation though.
The fact that the output size is pre-specified probably indicates that the simpler method of generating all the key material at once is at least foreseen by the API designers (they probably created an implementation before subjecting it to peer review in the JCF).
One KDF round will generate 32 bytes output (considering SHA-256 algorithm) then how API's df.nextBytes() & df.lastBytes() will work with any output expected length < 32 bytes?
It will commonly return the leftmost bytes (of the hash output) and likely leave the rest of the bytes in a buffer. This buffer will likely be destroyed together with the rest of the state when lastBytes is called (so don't forget to do so).
Note that the API clearly states that you have to re-initialize the DerivationFunction instance if you want to use it again. So that is a very strong indication that they though of destruction of key material (something that is required by FIPS and Common Criteria certification, not just common sense).
Other KDF's could have a different way of returning bytes, but using the leftmost bytes and then add rounds to the right is so common you can call it universal. For the ANSI X9.63 KDF this is certainly the case and it is clearly specified in the standard that way.
In this KDF counter is incremented in every next round then how counter will be managed between df.nextBytes() & df.lastBytes() API's?
These are methods of the same class and cannot be viewed separately, so they are not separate API's. Class instances can keep state in anyway they want. It might simply hold the counter as class variable, but if it decided to generate the bytes during init or the first nextBytes / lastBytes call then the counter is not even required anymore.

Erlang binary protocol serialization

I'm currently using Erlang for a big project but i have a question regarding a proper proceeding.
I receive bytes over a tcp socket. The bytes are according to a fixed protocol, the sender is a pyton client. The python client uses class inheritance to create bytes from the objects.
Now i would like to (in Erlang) take the bytes and convert these to their equivelant messages, they all have a common message header.
How can i do this as generic as possible in Erlang?
Kind Regards,
Me
Pattern matching/binary header consumption using Erlang's binary syntax. But you will need to know either exactly what bytes or bits your are expecting to receive, or the field sizes in bytes or bits.
For example, let's say that you are expecting a string of bytes that will either begin with the equivalent of the ASCII strings "PUSH" or "PULL", followed by some other data you will place somewhere. You can create a function head that matches those, and captures the rest to pass on to a function that does "push()" or "pull()" based on the byte header:
operation_type(<<"PUSH", Rest/binary>>) -> push(Rest);
operation_type(<<"PULL", Rest/binary>>) -> pull(Rest).
The bytes after the first four will now be in Rest, leaving you free to interpret whatever subsequent headers or data remain in turn. You could also match on the whole binary:
operation_type(Bin = <<"PUSH", _/binary>>) -> push(Bin);
operation_type(Bin = <<"PULL", _/binary>>) -> pull(Bin).
In this case the "_" variable works like it always does -- you're just checking for the lead, essentially peeking the buffer and passing the whole thing on based on the initial contents.
You could also skip around in it. Say you knew you were going to receive a binary with 4 bytes of fluff at the front, 6 bytes of type data, and then the rest you want to pass on:
filter_thingy(<<_:4/binary, Type:6/binary, Rest/binary>>) ->
% Do stuff with Rest based on Type...
It becomes very natural to split binaries in function headers (whether the data equates to character strings or not), letting the "Rest" fall through to appropriate functions as you go along. If you are receiving Python pickle data or something similar, you would want to write the parsing routine in a recursive way, so that the conclusion of each data type returns you to the top to determine the next type, with an accumulated tree that represents the data read so far.
I only covered 8-bit bytes above, but there is also a pure bitstring syntax, which lets you go as far into the weeds with bits and bytes as you need with the same ease of syntax. Matching is a real lifesaver here.
Hopefully this informed more than confused. Binary syntax in Erlang makes this the most pleasant binary parsing environment in a general programming language I've yet encountered.
http://www.erlang.org/doc/programming_examples/bit_syntax.html

Trying to understand nbits value from stratum protocol

I'm looking at the stratum protocol and I'm having a problem with the nbits value of the mining.notify method. I have trouble calculating it, I assume it's the currency difficulty.
I pull a notify from a dogecoin pool and it returned 1b3cc366 and at the time the difficulty was 1078.52975077.
I'm assuming here that 1b3cc366 should give me 1078.52975077 when converted. But I can't seem to do the conversion right.
I've looked here, here and also tried the .NET function BitConverter.Int64BitsToDouble.
Can someone help me understand what the nbits value signify?
You are right, nbits is current network difficulty.
Difficulty encoding is throughly described here.
Hexadecimal representation like 0x1b3cc366 consists of two parts:
0x1b -- number of bytes in a target
0x3cc366 -- target prefix
This means that valid hash should be less than 0x3cc366000000000000000000000000000000000000000000000000 (it is exactly 0x1b = 27 bytes long).
Floating point representation of difficulty shows how much current target is harder than the one used in the genesis block.
Satoshi decided to use 0x1d00ffff as a difficulty for the genesis block, so the target was
0x00ffff0000000000000000000000000000000000000000000000000000.
And 1078.52975077 is how much current target is greater than the initial one:
$ echo 'ibase=16;FFFF0000000000000000000000000000000000000000000000000000 / 3CC366000000000000000000000000000000000000000000000000' | bc -l
1078.52975077482646448605

Analysis of pgpdump output

I have used pgpdump on an encrypted file (via BouncyCastle) to get more information about it and found several lines about partial start, partial continue and partial end.
So I was wondering what exactly this was describing. Is it some sort of fragmentation of plain text?
Furthermore what does the bit count stand for after the RSA algorithm? In this case it's 1022 bits, but I've seen files with 1023 and 1024bits.
Partial body lengths are pretty well explained by this tumblr post. OpenPGP messages are composed of packets of a given length. Sometimes for large outputs (or in the case of packets from GnuPG, short messages), there will be partial body lengths that specify that another header will show up that tell the reader to continue reading From the post:
A partial body length tells the parser: “I know there are at least N more bytes in this packet. After N more bytes, there will be another header to tell if how many more bytes to read.” The idea being, I guess, that you can encrypt a stream of data as it comes in without having to know when it ends. Maybe you are PGP encrypting a speech, or some off-the-air TV. I don’t know. It can be infinite length — you can just keep throwing more partial body length headers in there, each one can handle up to a gigabyte in length. Every gigabyte it informs the parser: “yeah, there’s more coming!”
So in the case of your screenshot, pgpdump reads 8192 bytes, then encounters another header that says to read another 2048 bytes. after that 2k bytes, it hits another header for 1037 bytes, so on and so forth until the last continue header. 489 bytes after that is the end of the message
The 1022 bits, is the length of the public modulus. It is always going to be close to 1024 (if you have a 1024-bit key) but it can end up being slightly shorter than that given the initial selection of the RSA parameters. They are still called "1024-bit keys" though, even though they are slightly shorter than that.

Interoperability of AES CTR mode?

I use AES128 crypto in CTR mode for encryption, implemented for different clients (Android/Java and iOS/ObjC). The 16 byte IV used when encrypting a packet is formated like this:
<11 byte nonce> | <4 byte packet counter> | 0
The packet counter (included in a sent packet) is increased by one for every packet sent. The last byte is used as block counter, so that packets with fewer than 256 blocks always get a unique counter value. I was under the assumption that the CTR mode specified that the counter should be increased by 1 for each block, using the 8 last bytes as counter in a big endian way, or that this at least was a de facto standard. This also seems to be the case in the Sun crypto implementation.
I was a bit surprised when the corresponding iOS implementation (using CommonCryptor, iOS 5.1) failed to decode every block except the first when decoding a packet. It seems that CommonCryptor defines the counter in some other way. The CommonCryptor can be created in both big endian and little endian mode, but some vague comments in the CommonCryptor code indicates that this is not (or at least has not been) fully supported:
http://www.opensource.apple.com/source/CommonCrypto/CommonCrypto-60026/Source/API/CommonCryptor.c
/* corecrypto only implements CTR_BE. No use of CTR_LE was found so we're marking
this as unimplemented for now. Also in Lion this was defined in reverse order.
See <rdar://problem/10306112> */
By decoding block by block, each time setting the IV as specified above, it works nicely.
My question: is there a "right" way of implementing the CTR/IV mode when decoding multiple blocks in a single go, or can I expect it to be interoperability problems when using different crypto libs? Is CommonCrypto bugged in this regard, or is it just a question of implementing the CTR mode differently?
The definition of the counter is (loosely) specified in NIST recommendation sp800-38a Appendix B. Note that NIST only specifies how to use CTR mode with regards to security; it does not define one standard algorithm for the counter.
To answer your question directly, whatever you do you should expect the counter to be incremented by one each time. The counter should represent a 128 bit big endian integer according to the NIST specifications. It may be that only the least significant (rightmost) bits are incremented, but that will usually not make a difference unless you pass the 2^32 - 1 or 2^64 - 1 value.
For the sake of compatibility you could decide to use the first (leftmost) 12 bytes as random nonce, and leave the latter ones to zero, then let the implementation of the CTR do the increments. In that case you simply use a 96 bit / 12 byte random at the start, in that case there is no need for a packet counter.
You are however limited to 2^32 * 16 bytes of plaintext until the counter uses up all the available bits. It is implementation specific if the counter returns to zero or if the nonce itself is included in the counter, so you may want to limit yourself to messages of 68,719,476,736 = ~68 GB (yes that's base 10, Giga means 1,000,000,000).
because of the birthday problem you've got a 2^48 chance (48 = 96 / 2) of creating a collision for the nonce (required for each message, not each block), so you should limit the amount of messages;
if some attacker tricks you into decrypting 2^32 packets for the same nonce, you run out of counter.
In case this is still incompatible (test!) then use the initial 8 bytes as nonce. Unfortunately that does mean that you need to limit the number of messages because of the birthday problem.
Further investigations sheds some light on the CommonCrypto problem:
In iOS 6.0.1 the little endian option is now unimplemented. Also, I have verified that CommonCrypto is bugged in that the CCCryptorReset method does not in fact change the IV as it should, instead using pre-existing IV. The behaviour in 6.0.1 is different from 5.x.
This is potentially a security risc, if you initialize CommonCrypto with a nulled IV, and reset it to the actual IV right before encrypting. This would lead to all your data being encrypted with the same (nulled) IV, and multiple streams (that perhaps should have different IV but use same key) would leak data via a simple XOR of packets with corresponding ctr.