access and modify multidimensional arrays in postgres - sql

I can't figure out how to change multidimensional arrays in postgres. Let's say there is the following code:
do
$$
declare
a double precision[][];
x integer;
y integer;
begin
for x in 1..3 loop
for y in 1..3 loop
a[x y]:= x * y;
raise notice 'x: %, y: %, value: %, should be: %',x, y, a[x:y], x*y;
end loop;
end loop;
end
$$
language plpgsql;
The result is the following:
x: 1, y: 1, value: {1}, should be: 1
x: 1, y: 2, value: {2}, should be: 2
x: 1, y: 3, value: {3}, should be: 3
x: 2, y: 1, value: {}, should be: 2
x: 2, y: 2, value: {4}, should be: 4
x: 2, y: 3, value: {6}, should be: 6
x: 3, y: 1, value: {}, should be: 3
x: 3, y: 2, value: {}, should be: 6
x: 3, y: 3, value: {9}, should be: 9
As you can see, there are some problems. For example the combination of x=2 and y=1 results in {}.
Normally I would think that I can change an array by
a[x][y]:= value;
but that produces an error.

Your example operates one-dimension array - you can check it with array_ndims(a). or just raise info '%',a;.
Instead try a[x][y]:= value; approach with explicitly defining dimensions to avoid error, eg:
do
$$
declare
a double precision[][];
x integer;
y integer;
begin
a := array[[NULL,NULL,NULL],[NULL,NULL,NULL],[NULL,NULL,NULL]];
for x in 1..3 loop
for y in 1..3 loop
a[x][y]:= x * y;
raise notice 'x: %, y: %, value: %, should be: %',x, y, a[x][y], x*y;
end loop;
end loop;
raise info '%',a;
end
$$
language plpgsql;
NOTICE: x: 1, y: 1, value: 1, should be: 1
NOTICE: x: 1, y: 2, value: 2, should be: 2
NOTICE: x: 1, y: 3, value: 3, should be: 3
NOTICE: x: 2, y: 1, value: 2, should be: 2
NOTICE: x: 2, y: 2, value: 4, should be: 4
NOTICE: x: 2, y: 3, value: 6, should be: 6
NOTICE: x: 3, y: 1, value: 3, should be: 3
NOTICE: x: 3, y: 2, value: 6, should be: 6
NOTICE: x: 3, y: 3, value: 9, should be: 9
INFO: {{1,2,3},{2,4,6},{3,6,9}}
DO
Also mind - I changed colon slicing to exact index in raise

Related

Can the right column be fixed in the bootstrap-vue table?

I want right fixed columns in the bootstrap-vue table
but, the Sticky function in the document is only fixed to the left.
Is there a way to fix the right side or last columns?
I want both the left and right columns being fixed in place.
documnet : https://bootstrap-vue.org/docs/components/table#sticky-columns
<template>
<div>
<div class="mb-2">
<b-form-checkbox v-model="stickyHeader" inline>Sticky header</b-form-checkbox>
<b-form-checkbox v-model="noCollapse" inline>No border collapse</b-form-checkbox>
</div>
<b-table
:sticky-header="stickyHeader"
:no-border-collapse="noCollapse"
responsive
:items="items"
:fields="fields"
>
<!-- We are using utility class `text-nowrap` to help illustrate horizontal scrolling -->
<template #head(id)="scope">
<div class="text-nowrap">Row ID</div>
</template>
<template #head()="scope">
<div class="text-nowrap">
Heading {{ scope.label }}
</div>
</template>
</b-table>
</div>
</template>
<script>
export default {
data() {
return {
stickyHeader: true,
noCollapse: false,
fields: [
{ key: 'id', stickyColumn: true, isRowHeader: true, variant: 'primary' },
'a',
'b',
{ key: 'c', stickyColumn: true, variant: 'info' },
'd',
'e',
'f',
'g',
'h',
'i',
'j',
'k',
'l'
],
items: [
{ id: 1, a: 0, b: 1, c: 2, d: 3, e: 4, f: 5, g: 6, h: 7, i: 8, j: 9, k: 10, l: 11 },
{ id: 2, a: 0, b: 1, c: 2, d: 3, e: 4, f: 5, g: 6, h: 7, i: 8, j: 9, k: 10, l: 11 },
{ id: 3, a: 0, b: 1, c: 2, d: 3, e: 4, f: 5, g: 6, h: 7, i: 8, j: 9, k: 10, l: 11 },
{ id: 4, a: 0, b: 1, c: 2, d: 3, e: 4, f: 5, g: 6, h: 7, i: 8, j: 9, k: 10, l: 11 },
{ id: 5, a: 0, b: 1, c: 2, d: 3, e: 4, f: 5, g: 6, h: 7, i: 8, j: 9, k: 10, l: 11 },
{ id: 6, a: 0, b: 1, c: 2, d: 3, e: 4, f: 5, g: 6, h: 7, i: 8, j: 9, k: 10, l: 11 },
{ id: 7, a: 0, b: 1, c: 2, d: 3, e: 4, f: 5, g: 6, h: 7, i: 8, j: 9, k: 10, l: 11 },
{ id: 8, a: 0, b: 1, c: 2, d: 3, e: 4, f: 5, g: 6, h: 7, i: 8, j: 9, k: 10, l: 11 },
{ id: 9, a: 0, b: 1, c: 2, d: 3, e: 4, f: 5, g: 6, h: 7, i: 8, j: 9, k: 10, l: 11 },
{ id: 10, a: 0, b: 1, c: 2, d: 3, e: 4, f: 5, g: 6, h: 7, i: 8, j: 9, k: 10, l: 11 }
]
}
}
}
</script>
It's possible by overriding bootstrap's CSS with some of our own. First make sure the last column has the stickyColumn: true option plus whatever other options you want to give it:
...
'i',
'j',
'k',
{ key: "l", stickyColumn: true, isRowHeader: true, variant: "primary" },
This will ensure it has a classname we can easily select on. Apply styling that gives the last sticky column in the table an attribute of right: 0:
<style>
.b-table-sticky-column:last-child {
right: 0;
}
</style>
codesandbox example

Why is my function looping? And not return answer

This kata from codewar is not working!
#(tribonacci([1, 2, 3], 10), [1, 2, 3, 6, 11, 20, 37, 68, 125, 230])
def tribonacci(signature, n):
i = 0
while len(signature) != n:
signature.append(sum(signature[i:i + 3]))
i += 1
return signature
Your code works just fine. Perhaps you forgot to print so you didn't see the result?
For example, try this:
def tribonacci(signature, n):
i = 0
while len(signature) != n:
signature.append(sum(signature[i:i + 3]))
i += 1
return signature
print(tribonacci([1, 2, 3], 10))

Some array indexing in numpy

lookup = np.array([60, 40, 50, 60, 90])
The values in the following arrays are equal to indices of lookup.
a = np.array([1, 2, 0, 4, 3, 2, 4, 2, 0])
b = np.array([0, 1, 2, 3, 3, 4, 1, 2, 1])
c = np.array([4, 2, 1, 4, 4, 0, 4, 4, 2])
array 1st column elements lookup value
a 1 --> 40
b 0 --> 60
c 4 --> 90
Maximum is 90.
So, first element of result is 4.
This way,
expected result = array([4, 2, 0, 4, 4, 4, 4, 4, 0])
How to get it?
I tried as:
d = np.vstack([a, b, c])
print (d)
res = lookup[d]
res = np.max(res, axis = 0)
print (d[enumerate(lookup)])
I got error
IndexError: only integers, slices (:), ellipsis (...), numpy.newaxis (None) and integer or boolean arrays are valid indices
Do you want this:
d = np.vstack([a,b,c])
# option 1
rows = lookup[d].argmax(0)
d[rows, np.arange(d.shape[1])]
# option 2
(lookup[:,None] == lookup[d].max(0)).argmax(0)
Output:
array([4, 2, 0, 4, 4, 4, 4, 4, 0])

reverse order of Y axis in Morris line chart

Is it possible to set y axis values in reverse order(0-100)?
Max value on top must start from zero to 100 at bottom.
Morris.Line({
element: 'line-example',
data: [
{ y: '2006', a: 100, b: 90 },
{ y: '2007', a: 75, b: 65 },
{ y: '2008', a: 50, b: 40 },
{ y: '2009', a: 75, b: 65 },
{ y: '2010', a: 50, b: 40 },
{ y: '2011', a: 75, b: 65 },
{ y: '2012', a: 100, b: 90 }
],
xkey: 'y',
ykeys: ['a', 'b'],
labels: ['Series A', 'Series B']
});
I got it working by setting ymin to 100 and ymax to 0. It then plotted my line graph with values closest to 0 at the top, and closest too 100 at the bottom. Here's my code snippet.
config =
{
data: data,
xkey: 'y',
ymin: 100,
ymax: 0,
fillOpacity: 0.6,
....
}
You can see instructions here: https://morrisjs.github.io/morris.js/lines.html

Optimizing the Verhoeff Algorithm in R

I have written the following function to calculate a check digit in R.
verhoeffCheck <- function(x)
{
## calculates check digit based on Verhoeff algorithm
## note that due to the way strsplit works, to call for vector x, use sapply(x,verhoeffCheck)
## check for string since leading zeros with numbers will be lost
if (class(x)!="character"){stop("Must enter a string")}
#split and convert to numbers
digs <- strsplit(x,"")[[1]]
digs <- as.numeric(digs)
digs <- rev(digs) ## right to left algorithm
## tables required for D_5 group
d5_mult <- matrix(c(
0:9,
c(1:4,0,6:9,5),
c(2:4,0:1,7:9,5:6),
c(3:4,0:2,8:9,5:7),
c(4,0:3,9,5:8),
c(5,9:6,0,4:1),
c(6:5,9:7,1:0,4:2),
c(7:5,9:8,2:0,4:3),
c(8:5,9,3:0,4),
9:0
),10,10,byrow=T)
d5_perm <- matrix(c(
0:9,
c(1,5,7,6,2,8,3,0,9,4),
c(5,8,0,3,7,9,6,1,4,2),
c(8,9,1,6,0,4,3,5,2,7),
c(9,4,5,3,1,2,6,8,7,0),
c(4,2,8,6,5,7,3,9,0,1),
c(2,7,9,3,8,0,6,4,1,5),
c(7,0,4,6,9,1,3,2,5,8)
),8,10,byrow=T)
d5_inv <- c(0,4:1,5:9)
## apply algoritm - note 1-based indexing in R
d <- 0
for (i in 1:length(digs)){
d <- d5_mult[d+1,(d5_perm[(i%%8)+1,digs[i]+1])+1]
}
d5_inv[d+1]
}
In order to run on a vector of strings, sapply must be used. This is in part because of the use of strsplit, which returns a list of vectors. This does impact on the performance even for only moderately sized inputs.
How could this function be vectorized?
I am also aware that some performance is lost in having to create the tables in each iteration. Would storing these in a new environment be a better solution?
We begin by defining the lookup matrices. I've laid them out in a way
that should make them easier to check against a reference, e.g.
http://en.wikipedia.org/wiki/Verhoeff_algorithm.
d5_mult <- matrix(as.integer(c(
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
1, 2, 3, 4, 0, 6, 7, 8, 9, 5,
2, 3, 4, 0, 1, 7, 8, 9, 5, 6,
3, 4, 0, 1, 2, 8, 9, 5, 6, 7,
4, 0, 1, 2, 3, 9, 5, 6, 7, 8,
5, 9, 8, 7, 6, 0, 4, 3, 2, 1,
6, 5, 9, 8, 7, 1, 0, 4, 3, 2,
7, 6, 5, 9, 8, 2, 1, 0, 4, 3,
8, 7, 6, 5, 9, 3, 2, 1, 0, 4,
9, 8, 7, 6, 5, 4, 3, 2, 1, 0
)), ncol = 10, byrow = TRUE)
d5_perm <- matrix(as.integer(c(
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
1, 5, 7, 6, 2, 8, 3, 0, 9, 4,
5, 8, 0, 3, 7, 9, 6, 1, 4, 2,
8, 9, 1, 6, 0, 4, 3, 5, 2, 7,
9, 4, 5, 3, 1, 2, 6, 8, 7, 0,
4, 2, 8, 6, 5, 7, 3, 9, 0, 1,
2, 7, 9, 3, 8, 0, 6, 4, 1, 5,
7, 0, 4, 6, 9, 1, 3, 2, 5, 8
)), ncol = 10, byrow = TRUE)
d5_inv <- as.integer(c(0, 4, 3, 2, 1, 5, 6, 7, 8, 9))
Next, we'll define the check function, and try it out with a test input.
I've followed the derivation in wikipedia as closely as possible.
p <- function(i, n_i) {
d5_perm[(i %% 8) + 1, n_i + 1] + 1
}
d <- function(c, p) {
d5_mult[c + 1, p]
}
verhoeff <- function(x) {
#split and convert to numbers
digs <- strsplit(as.character(x), "")[[1]]
digs <- as.numeric(digs)
digs <- rev(digs) ## right to left algorithm
## apply algoritm - note 1-based indexing in R
c <- 0
for (i in 1:length(digs)) {
c <- d(c, p(i, digs[i]))
}
d5_inv[c + 1]
}
verhoeff(142857)
## [1] 0
This function is fundamentally iterative, as each iteration depends on
the value of the previous. This means that we're unlikely to be able to
vectorise in R, so if we want to vectorise, we'll need to use Rcpp.
However, before we turn to that, it's worth exploring if we can do the
initial split faster. First we do a little microbenchmark to see if it's
worth bothering:
library(microbenchmark)
digits <- function(x) {
digs <- strsplit(as.character(x), "")[[1]]
digs <- as.numeric(digs)
rev(digs)
}
microbenchmark(
digits(142857),
verhoeff(142857)
)
## Unit: microseconds
## expr min lq median uq max neval
## digits(142857) 11.30 12.01 12.43 12.85 28.79 100
## verhoeff(142857) 32.24 33.81 34.66 35.47 95.85 100
It looks like it! On my computer, verhoeff_prepare() accounts for
about 50% of the run time. A little searching on stackoverflow reveals
another approach to turning a number into
digits:
digits2 <- function(x) {
n <- floor(log10(x))
x %/% 10^(0:n) %% 10
}
digits2(12345)
## [1] 5 4 3 2 1
microbenchmark(
digits(142857),
digits2(142857)
)
## Unit: microseconds
## expr min lq median uq max neval
## digits(142857) 11.495 12.102 12.468 12.834 79.60 100
## digits2(142857) 2.322 2.784 3.358 3.561 13.69 100
digits2() is a lot faster than digits() but it has limited impact on
the whole runtime.
verhoeff2 <- function(x) {
digs <- digits2(x)
c <- 0
for (i in 1:length(digs)) {
c <- d(c, p(i, digs[i]))
}
d5_inv[c + 1]
}
verhoeff2(142857)
## [1] 0
microbenchmark(
verhoeff(142857),
verhoeff2(142857)
)
## Unit: microseconds
## expr min lq median uq max neval
## verhoeff(142857) 33.06 34.49 35.19 35.92 73.38 100
## verhoeff2(142857) 20.98 22.58 24.05 25.28 48.69 100
To make it even faster we could try C++.
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
int verhoeff3_c(IntegerVector digits, IntegerMatrix mult, IntegerMatrix perm,
IntegerVector inv) {
int n = digits.size();
int c = 0;
for(int i = 0; i < n; ++i) {
int p = perm(i % 8, digits[i]);
c = mult(c, p);
}
return inv[c];
}
verhoeff3 <- function(x) {
verhoeff3_c(digits(x), d5_mult, d5_perm, d5_inv)
}
verhoeff3(142857)
## [1] 3
microbenchmark(
verhoeff2(142857),
verhoeff3(142857)
)
## Unit: microseconds
## expr min lq median uq max neval
## verhoeff2(142857) 21.00 22.85 25.53 27.11 63.71 100
## verhoeff3(142857) 16.75 17.99 18.87 19.64 79.54 100
That doesn't yield much of an improvement. Maybe we can do better if we
pass the number to C++ and process the digits in a loop:
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
int verhoeff4_c(int number, IntegerMatrix mult, IntegerMatrix perm,
IntegerVector inv) {
int c = 0;
int i = 0;
for (int i = 0; number > 0; ++i, number /= 10) {
int p = perm(i % 8, number % 10);
c = mult(c, p);
}
return inv[c];
}
verhoeff4 <- function(x) {
verhoeff4_c(x, d5_mult, d5_perm, d5_inv)
}
verhoeff4(142857)
## [1] 3
microbenchmark(
verhoeff2(142857),
verhoeff3(142857),
verhoeff4(142857)
)
## Unit: microseconds
## expr min lq median uq max neval
## verhoeff2(142857) 21.808 24.910 26.838 27.797 64.22 100
## verhoeff3(142857) 17.699 18.742 19.599 20.764 81.67 100
## verhoeff4(142857) 3.143 3.797 4.095 4.396 13.21 100
And we get a pay off: verhoeff4() is about 5 times faster than
verhoeff2().
If your input strings can contain different numbers of characters, then I don't see any way round lapply calls (or a plyr equivalent). The trick is to move them inside the function, so verhoeffCheck can accept vector inputs. This way you only need to create the matrices once.
verhoeffCheckNew <- function(x)
{
## calculates check digit based on Verhoeff algorithm
## check for string since leading zeros with numbers will be lost
if (!is.character(x)) stop("Must enter a string")
#split and convert to numbers
digs <- strsplit(x, "")
digs <- lapply(digs, function(x) rev(as.numeric(x)))
## tables required for D_5 group
d5_mult <- matrix(c(
0:9,
c(1:4,0,6:9,5),
c(2:4,0:1,7:9,5:6),
c(3:4,0:2,8:9,5:7),
c(4,0:3,9,5:8),
c(5,9:6,0,4:1),
c(6:5,9:7,1:0,4:2),
c(7:5,9:8,2:0,4:3),
c(8:5,9,3:0,4),
9:0
),10,10,byrow=T)
d5_perm <- matrix(c(
0:9,
c(1,5,7,6,2,8,3,0,9,4),
c(5,8,0,3,7,9,6,1,4,2),
c(8,9,1,6,0,4,3,5,2,7),
c(9,4,5,3,1,2,6,8,7,0),
c(4,2,8,6,5,7,3,9,0,1),
c(2,7,9,3,8,0,6,4,1,5),
c(7,0,4,6,9,1,3,2,5,8)
),8,10,byrow=T)
d5_inv <- c(0,4:1,5:9)
## apply algorithm - note 1-based indexing in R
sapply(digs, function(x)
{
d <- 0
for (i in 1:length(x)){
d <- d5_mult[d + 1, (d5_perm[(i %% 8) + 1, x[i] + 1]) + 1]
}
d5_inv[d+1]
})
}
Since d depends on what it was previously, the is no easy way to vectorise the for loop.
My version runs in about half the time for 1e5 strings.
rand_string <- function(n = 12)
{
paste(sample(as.character(0:9), sample(n), replace = TRUE), collapse = "")
}
big_test <- replicate(1e5, rand_string())
tic()
res1 <- unname(sapply(big_test, verhoeffCheck))
toc()
tic()
res2 <- verhoeffCheckNew(big_test)
toc()
identical(res1, res2) #hopefully TRUE!
See this question for tic and toc.
Further thoughts:
You may want additional input checking for "" and other strings that return NA when converted in numeric.
Since you are dealing exclusively with integers, you may get a slight performance benefit from using them rather than doubles. (Use as.integer rather than as.numeric and append L to the values in your matrices.)
Richie C answered the vectorisation question nicely; as for only creatig the tables once without cluttering the global name space, one quick solution that does not require a package is
verhoeffCheck <- local(function(x)
{
## calculates check digit based on Verhoeff algorithm
## note that due to the way strsplit works, to call for vector x, use sapply(x,verhoeffCheck)
## check for string since leading zeros with numbers will be lost
if (class(x)!="character"){stop("Must enter a string")}
#split and convert to numbers
digs <- strsplit(x,"")[[1]]
digs <- as.numeric(digs)
digs <- rev(digs) ## right to left algorithm
## apply algoritm - note 1-based indexing in R
d <- 0
for (i in 1:length(digs)){
d <- d5_mult[d+1,(d5_perm[(i%%8)+1,digs[i]+1])+1]
}
d5_inv[d+1]
})
assign("d5_mult", matrix(c(
0:9, c(1:4,0,6:9,5), c(2:4,0:1,7:9,5:6), c(3:4,0:2,8:9,5:7),
c(4,0:3,9,5:8), c(5,9:6,0,4:1), c(6:5,9:7,1:0,4:2), c(7:5,9:8,2:0,4:3),
c(8:5,9,3:0,4), 9:0), 10, 10, byrow = TRUE),
envir = environment(verhoeffCheck))
assign("d5_perm", matrix(c(
0:9, c(1,5,7,6,2,8,3,0,9,4), c(5,8,0,3,7,9,6,1,4,2),
c(8,9,1,6,0,4,3,5,2,7), c(9,4,5,3,1,2,6,8,7,0), c(4,2,8,6,5,7,3,9,0,1),
c(2,7,9,3,8,0,6,4,1,5), c(7,0,4,6,9,1,3,2,5,8)), 8, 10, byrow = TRUE),
envir = environment(verhoeffCheck))
assign("d5_inv", c(0,4:1,5:9), envir = environment(verhoeffCheck))
## Now just use the function
which keeps the data in the environment of the function. You can time it to see how much faster it is.
Hope this helps.
Allan