Composite indexing using Redis in a hierarchical data model - redis

I have a data model like this:
Fields:
counter number (e.g. 00888, 00777, 00123 etc)
counter code (e.g. XA, XD, ZA, SI etc)
start date (e.g. 2017-12-31 ...)
end date (e.g. 2017-12-31 ...)
Other counter date (e.g. xxxxx)
Current Datastructure organization is like this (root and multiple child format):
counter_num + counter_code
---> start_date + end_date --> xxxxxxxx
---> start_date + end_date --> xxxxxxxx
---> start_date + end_date --> xxxxxxxx
Example:
00888 + XA
---> Jan 10 + Jan 20 --> xxxxxxxx
---> Jan 21 + Jan 31 --> xxxxxxxx
---> Feb 01 + Dec 31 --> xxxxxxxx
00888 + ZI
---> Jan 09 + Feb 24 --> xxxxxxxx
---> Feb 25 + Dec 31 --> xxxxxxxx
00777 + XA
---> Jan 09 + Feb 24 --> xxxxxxxx
---> Feb 25 + Dec 31 --> xxxxxxxx
Today the retrieval happens in 2 ways:
//Fetch unique counter data using all the composite keys
counter_number + counter_code + date (start_date <= date <= end_date)
//Fetch all the counter codes and corresponding data matching the below conditions
counter_number + date (start_date <= date <= end_date)
What's the best way to model this in redis as I need to cache some of the frequently hit data. I feel sorted sets should do this somehow, but unable to model it.
UPDATE:
Just to remove the confusion, the ask here is not for an SQL "BETWEEN" like query. 'Coz I don't know what the start_date and end_date values are. Think they are just column names.
What I don't want is
SELECT * FROM redis_db
WHERE counter_num AND
date_value BETWEEN start_date AND end_date
What I want is
SELECT * FROM redis_db
WHERE counter_num AND
start_date <= specifc_date AND end_date >= specific_date
NOTE: The requirement is pretty much close to 2D indexing of what is proposed in Redis multi-dimensional indexing document
https://redis.io/topics/indexes#multi-dimensional-indexes
I understood the concept but unable to digest the implementation detail that is given.

I'm unlikely to get this done in time for the bounty, but what the hell...
This sounds like a job for geohashing. Geohashing is what you do when you want to index a 2-dimensional (or higher) dataset. For example, if you have a database of cities and you want to be able to quickly respond to queries like "find all the cities within 50km of X", you use geohashing.
For the purposes of this question, you can think of start_date and end_date as x and y coordinates. Normally in geohashing you're searching for points in your dataset near a particular point in space, or in a certain bounded region of space. In this case you just have a lower bound on one of the coordinates and an upper bound on the other one. But I suppose in practice the whole dataset is bounded anyway, so that's not a problem.
It would be nice if there was a library for doing this in Redis. There probably is, if you look hard enough. The newer versions of Redis have built-in geohashing functionality. See the commands starting with GEO. But it doesn't claim to be very accurate, and it's designed for the surface of a sphere rather than a flat surface.
So as far as I can see you have 3 options:
Map your search space to a small part of the sphere, preferably near the equator. Use the Redis GEO commands. To search, use GEOSPHERE on a circle covering the triangle you're trying to search, taking into account the inbuilt inaccuracy and the distortion you get by mapping onto the sphere, then filter the results to get the ones that are actually inside the triangle.
Find some 3rd-party geohashing client for Redis which works on flat space and is more accurate than GEO.
Read the rest of this answer, or some other primer on geohashing, then implement it yourself on top of Redis. This is the hardest (but most educational) option.
If you have a database that indexes data using a numerical ordering, such that you can do queries like "find all the rows/records for which z is between a and b", you can build a geohash index on top of it. Suppose the coordinates are (non-negative) integers x and y. Then you add an integer-valued column z, and index by z. To calculate z, write x and y in binary, then take alternate digits from each. Example:
x = 969 = 0 1 1 1 1 0 0 1 0 0 1
y = 1130 = 1 0 0 0 1 1 0 1 0 1 0
z = 1750214 = 0110101011010011000110
Note that the index allows you to find, for example, all records positioned with z between 0101100000000000000000 and 0101101111111111111111 inclusive. In other words, all records for which z starts with 010110. Or to put it another way, you can find all records for which x starts with 001 and y starts with 110. This set of records corresponds to a square in the 2-dimensional space we are trying to search.
Not all squares can be searched in this way. We'll call these ones searchable squares. Suppose the client sends a request for all records for which (x,y) is inside a particular rectangle. (Or a circle, or some other reasonable geometric shape.) Then you need to find a set of searchable squares which cover the rectangle. Then, for each of these squares you've chosen, query the database for records inside that square and send the results to the client. (But you'll have to filter the results, because not all the records in the square are actually in the original rectangle.)
There's a balance to be struck. If you choose a small number of large special squares, you'll probably end up covering a much larger area of the map than you need; the query to the database will return lots of extra results that you'll have to filter out. Alternatively, if you use lots of little special squares, you'll be doing lots of queries to the database, many of which will return no results.
I said above that x and y could be start_time and end_time. But actually the distribution of your dataset won't be as symmetrical as in most uses of geohashing. So the performance might be better (or worse) if you use x = end_time + start_time and y = end_time - start_time.

Because your question remains a bit vague on how you desire to query your data, it remains unclear on how to solve your question. With that in mind, however, here are my thoughts on how I might model your data:
Updated answer, detailing how to use SORTED SET
I have edited this answer to be able to store your values in a way that you can query by dynamic date ranges. This edit assumes that your database values are timestamps, as in the value is for a single time, not 2, as in your current setup.
Yes, you are correct that using Sorted Sets will be able to accomplish this. I suggest that you always use a Unix timestamp value for the score component in these sorted sets.
In case you were not already familiar with redis, let's explain indexing limitations. Redis is a simple key-value designed to quickly retrieve values by a key. Because of this design, it does not contain many features of your traditional DBMS, like indexing a column for instance.
In redis, you accomplish indexing by using a key, and the most nested key-like structures are available in HASH and SORTED SET, but you only get 2 key-like structures. In a HASH, you have the key (same as any data type), and a inner hash key, which can take the form of any string.
In a SORTED SET, you have the key (same as any data type), and a numeric value.
A HASH is nice to use to keep a grouped data organized.
A SORTED SET is nice if you want to query by a range of values. This could be a good fit for your data.
Your SORTED SET would look like the following:
key
00888:XA =>
score (date value) value
1452427200 (2016-01-10) xxxxxxxx
1452859200 (2016-01-10) yyyyxxxx
1453291200 (2016-01-10) zzzzxxxx
Let's use a more intuitive example, the 2017 Juventus roster:
To produce the SORTED SET in the table below, issue this command in your redis client:
ZADD JUVENTUS 32 "Emil Audero" 1 "Gianluigi Buffon" 42 "Mattia Del Favero" 36 "Leonardo Loria" 25 "Neto" 15 "Andrea Barzagli" 4 "Medhi Benatia" 19 "Leonardo Bonucci" 3 "Giorgio Chiellini" 40 "Luca Coccolo" 29 "Paolo De Ceglie" 26 "Stephan Lichtsteiner" 12 "Alex Sandro" 24 "Daniele Rugani" 43 "Alessandro Semprini" 23 "Dani Alves" 22 "Kwadwo Asamoah" 7 "Juan Cuadrado" 6 "Sami Khedira" 18 "Mario Lemina" 46 "Mehdi Leris" 38 "Rolando Mandragora" 8 "Claudio Marchisio" 14 "Federico Mattiello" 45 "Simone Muratore" 20 "Marko Pjaca" 5 "Miralem Pjanic" 28 "Tomás Rincón" 27 "Stefano Sturaro" 21 "Paulo Dybala" 9 "Gonzalo Higuaín" 34 "Moise Kean" 17 "Mario Mandzukic"
Jersey Name Jersey Name
32 Emil Audero 23 Dani Alves
1 Gianluigi Buffon 42 Mattia Del Favero
36 Leonardo Loria 25 Neto
15 Andrea Barzagli 4 Medhi Benatia
19 Leonardo Bonucci 3 Giorgio Chiellini
40 Luca Coccolo 29 Paolo De Ceglie
26 Stephan Lichtsteiner 12 Alex Sandro
24 Daniele Rugani 43 Alessandro Semprini
22 Kwadwo Asamoah 7 Juan Cuadrado
6 Sami Khedira 18 Mario Lemina
46 Mehdi Leris 38 Rolando Mandragora
8 Claudio Marchisio 14 Federico Mattiello
45 Simone Muratore 20 Marko Pjaca
5 Miralem Pjanic 28 Tomás Rincón
27 Stefano Sturaro 21 Paulo Dybala
9 Gonzalo Higuaín 34 Moise Kean
17 Mario Mandzukic
To query the roster by a range of jersey numbers:
ZRANGEBYSCORE JUVENTUS 1 5
Output:
1) "Gianluigi Buffon"
2) "Giorgio Chiellini"
3) "Medhi Benatia"
4) "Miralem Pjanic"
Note that the scores are not returned, however ZRANGEBYSCORE command orders the results in ASC order by score.
To add the scores, append "WITHSCORES" to the command, like so: ZRANGEBYSCORE JUVENTUS 1 5 WITHSCORES
By using ZRANGEBYSCORE, you should be able to query any key (counter number + counter code) with a date range,
producing the values in that range.
Original: Below is my original answer, recommending HASH
Based on your examples, I recommend you use a HASH.
With a hash, you would have a main key to find the hash (Ex. 00888:XA). Then within the hash, you have key -> value pairs (Ex. 2017-01-10:2017-01-20 -> xxxxxxxx). I prefer to delimit or tokenize my keys' components with the colon char :, but you can use any delimiter.
HASH follows your example data structure very well:
key
00888:XA =>
hashkey value
2017-01-10:2017-01-20 xxxxxxxx
2017-01-21:2017-01-31 yyyyxxxx
2016-02-01:2016-12-31 zzzzxxxx
key
00888:ZI =>
hashkey value
2017-01-10:2017-01-20 xxxxxxxx
2017-01-21:2017-01-31 xxxxyyyy
2016-02-01:2016-12-31 xxxxzzzz
When querying for data, instead of GET key, you would query with HGET key hashkey. Same for setting values, instead of SET key value, use HSET key hashkey value.
Example commands
HSET 00777:XA 2017-01-10:2017-01-20 xxxxxxxx
HSET 00777:XA 2017-01-21:2017-01-31 yyyyyyyy
HSET 00777:XA 2016-02-01:2016-12-31 zzzzzzzz
(Note: there is also a HMSET to simplify this into a single command)
Then:
HGET 00777:XA 2017-01-21:2017-01-31
Would return yyyyyyyy
Unless there is some specific performance consideration, or other goal for your data, I think Hashes will work great for your system.
It's also very convenient if you want to get all hashkeys or all values for a given hash, using commands like HKEYS, HVALS, or HGETALL.

Related

Creating a Nested/Loop Calculation in Vertica (?)

So maybe I'm just way over-thinking things, but is there any way to replicate a nested/loop calculation in Vertica with just SQL syntax.
Explanation -
In Column AP I have remaining values per month by an attribute key, in column CHANGE_1M I have an attribution value to apply.
The goal is for future values to calculate the preceding Row partition AP*CHANGE_1M, by the subsequent row partition CHANGE_1M to fill in the future AP values.
For reference I have 15,000 Keys Per Period and 60 Periods Per Year in the full-data set.
Sample Calculation
Period 5 =
(Period4_AP * Period5_CHANGE_1M)+Period4_AP
Period 6 =
(((Period4_AP * Period5_CHANGE_1M)+Period4_AP)*Period6_CHANGE_1M)
+
((Period4_AP * Period5_CHANGE_1M)+Period4_AP)
ect.
Sample Data on Top
Expected Results below
Vertica does not have (yet?) the RECURSIVE WITH clause, which you would need for the recursive calculation you seem to be needing here.
Only possible workaround would be tedious: write (or generate, using perl or Python, for example) as many nested queries as you need iterations.
I'll only want to detail this if you want to go down that path.
Long time no see - I should have returned to answer this question earlier.
I got so stuck on thinking of the programmatic way to solve this issue, I inherently forgot it is a math equation, and where you have math functions you have solutions.
Basically this question revolves around doing table multiplication.
The solution is to simply use LOG/LN functions to multiply and convert back using EXP.
Snippet of the simple solve.
Hope this helps other lost souls, don't forget your math background and spiral into a whirlpool of self-defeat.
EXP(SUM(LN(DEGREDATION)) OVER (ORDER BY PERIOD_NUMBER ASC ROWS UNBOUNDED PRECEDING)) AS DEGREDATION_RATE
** Controlled by what factors/attributes you need the data stratified by with a PARTITION
Basically instead of starting at the retention PX/P0, I back into with the degradation P1/P0 - P2/P1 ect.
PERIOD_NUMBER
DEGRADATION
DEGREDATION_RATE
DEGREDATION_RATE x 100000
0
100.00%
100.00%
100000.00
1
57.72%
57.72%
57715.18
2
60.71%
35.04%
35036.59
3
70.84%
24.82%
24820.66
4
76.59%
19.01%
19009.17
5
79.29%
15.07%
15071.79
6
83.27%
12.55%
12550.59
7
82.08%
10.30%
10301.94
8
86.49%
8.91%
8910.59
9
89.60%
7.98%
7984.24
10
86.03%
6.87%
6868.79
11
86.00%
5.91%
5907.16
12
90.52%
5.35%
5347.00
13
91.89%
4.91%
4913.46
14
89.86%
4.41%
4414.99
15
91.96%
4.06%
4060.22
16
89.36%
3.63%
3628.28
17
90.63%
3.29%
3288.13
18
92.45%
3.04%
3039.97
19
94.95%
2.89%
2886.43
20
92.31%
2.66%
2664.40
21
92.11%
2.45%
2454.05
22
93.94%
2.31%
2305.32
23
89.66%
2.07%
2066.84
24
94.12%
1.95%
1945.26
25
95.83%
1.86%
1864.21
26
92.31%
1.72%
1720.81
27
96.97%
1.67%
1668.66
28
90.32%
1.51%
1507.18
29
90.00%
1.36%
1356.46
30
94.44%
1.28%
1281.10
31
94.12%
1.21%
1205.74
32
100.00%
1.21%
1205.74
33
90.91%
1.10%
1096.13
34
90.00%
0.99%
986.52
35
94.44%
0.93%
931.71
36
100.00%
0.93%
931.71

Multiple Object Tracking (MOT) benchmark data-set format for ground truth tracking

I am trying to evaluate the performance of my object detection+tracking on the standard dataset used in the industry in the 2DMOT Challenge 2015. I have downloaded the dataset but I am unable to understand the data fields in the labelled ground truth data.
I have understood the first six columns of the dataset but unable to do so for the rest four columns. Following is the sample data from the directory <\2DMOT2015\train\ETH-Bahnhof\gt>:
frame no. object_id bb_left bb_top bb_width bb_height (?) (?) (?) (?)
1 1 212 204 20 57 0 -3.1784 16.34 0.45739
1 2 223 181 36 104 1 -1.407 9.0212 0.68774
Please let me know if you are aware of this?
The last three fields represent the 3D real-world coordinates of the objects. A similar data structure can be found in videos of ETH-Bahnhof, ETH-Sunnyday, PETS09-S2L1 and TUD-Stadtmitte in 2DMOT2015. For ground-truth, score=1. But sometimes it varies b/w 0-1, then it acts as a flag value and zeroes mean that the line is not to be considered for evaluation. So the data fields are in the format:
frame no. , object_id , bb_left , bb_top , bb_width , bb_height , score, X, Y, Z

Checking if IP falls within a range with Redis

I am interested in using Redis to check if a IP address (converted into integer) falls within a range of IPs. It is very likely that the ranges will overlap.
I have found this question/answer, although I am not able to fully understand the logic behind it.
Thank you for your help!
EDIT - Since I got a downvote (a comment to explain why would be nice), I've removed some clutter from my answer.
#DidierSpezia answer in your linked question is a good answer, but it becomes hard to maintain if you are adding/removing ranges.
However it is not trivial (and expensive) to build and maintain it.
I have an answer that is easier to maintain, but it could get slow and memory expensive to compute with many ranges as it requires cloning a set of all ranges.
You need to save all ranges twice, in two sets. The score of each range will be its border values.
Going with the sets in #DidierSpezia example:
A 2-8
B 4-6
C 2-9
D 7-10
Your two sets will be:
ZADD ranges:low 2 "2-8" 4 "4-6" 2 "2-9" 7 "7-10"
ZADD ranges:high 8 "2-8" 6 "4-6" 9 "2-9" 10 "7-10"
To query to which ranges a value belongs, you need to trim the ranges that the lower border is higher than the queried value, and trim the ranges that the higher border is lower.
The most efficient way I can think of is cloning one of the sets, trimming one of it sides by the rules gave above, changing the scores of the ranges to reflect the other border and then trim the second side.
Here's how to find the ranges 5 belongs to:
ZUNIONSTORE tmp 1 ranges:low
ZREMRANGEBYSCORE tmp (5 +inf
ZINTERSTORE tmp 2 tmp ranges:high WEIGHTS 0 1
ZREMRANGEBYSCORE tmp -inf (5
ZRANGE tmp 0 -1
In this discussion, Dvir Volk and #antirez suggested to use a sorted set in which each entry represent a range, and has the following form:
Member = "min-max" range
Score = max value
For example:
ZADD z 10 "0-10"
ZADD z 20 "10-20"
ZADD z 100 "50-100"
And in order to check if a value falls within a range, you can use ZRANGEBYSCORE and parse the member returned.
For example, to check value 5:
ZRANGEBYSCORE z 5 +inf LIMIT 0 1
this will return the "0-10" member, and you only need to parse the string and validate if your value is in between.
To check value 25:
ZRANGEBYSCORE z 25 +inf LIMIT 0 1
will return "50-100", but the value is not between that range.

How to sew multiple values into one

I need to store 5 values in a single SQL Server column, each range 1-90. The values cannot be repeated. I though of using the 2, 4, 8, 16, 32, 64, ... system but you guess it will get really big, using decimal I risk wrong calculation. Is there a convenient way to:
store the 5 values into a single column so that to avoid having 90 bit column in the table, see my previous post here.
quickly query the database for example to return all records with number X and Y
another option was a string (90) containing flags like 000001000011000 but this way I have to use substrings to query and I fear it will slow down on a table with 25.000 records or more.
First request: You say most are bit. But if not all then you cant use bitwise operator. And can't save it in a single field
In that case you need an aditional table.
Row_id | fieldName | fieldValue
1 | name1 | value1
1 | name2 | value2
.
.
.
1 | name90 | value90
Second request: Save the 5 values is very easy and fast on the aditional table. Just create and index for row_id on both tables.
Third Request: Here you say again can save it as bits. But instead using strings, that is a bad idea.
Your are right, number isnt big enough to hold 90 bit, that is because a number can only hold 32 or 64 bits depending on type.
In that case you need to use two field (64 bits) or three field (32 bits) to store all 90 possible flags.
Again easy to do and really fast.
EDIT
For use multiple fields you have to create categories
Like imagine there are 16 bits split into two 8 bits (0..256)
01234567 89ABCDEF
01010101 11111111
Create fieldUp and fieldDown
SAVE
FieldUp = 01234567
FieldUp = 1 + 4 + 16 + 64
FieldDown = 89ABCDEF
FieldDown = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128
Then Select a row with FLAGS [b1, b5, bA] would be
SELECT *
FROM TABLE
WHERE FieldUp & (4 + 32)
AND FieldDown & 8
I have resolved saving the numbers comma separated, then in my code i split this field into an array and can process the data. Numbers are not meant for math operations but just as a string.

How to generate sequences with distinct subsums?

I'm looking for a way to generate some (6 for default) equations where all subsums are unique.
For example,
a+b+c=50
d+e+f=50
g+h+i=50
a, d and g have to be distinct.
a+b and d+e have to be distinct.
e+f and h+i have to be distinct.
a+c and d+f have to be distinct.
But, a+b and e+f can be the same. So I only care about the subsums of aligned parameters..
I could only found ways to check whether some sequence is subsum-distinct, but I found nothing on how to generate such a sequence..
You didn't state whether you need it to be a random sequence, so suppose that this is not required.
One simple approach is this:
1 + 2 + 47 = 50
3 + 4 + 43 = 50
5 + 6 + 39 = 50
7 + 8 + 35 = 50
9 + 10 + 31 = 50
11 + 12 + 27 = 50
First two numbers are 2 smallest available numbers, the third number is final sum - those numbers.
a and b are always increasing, c is always decreasing
a + b is always increasing, b + c and a + c are always decreasing
You can generate it this way in a loop.
EDIT after comment that it has to be a random sequence:
Possibly you could create several sets (some sort of hashset/hashmap would be the most appropriate)
set of first summands
set of sums of first and second summands
set of sums of second and third summands
set of sums of first and third summands
set of previously generated triples
You would generate random triples this way:
If total number of demanded triples was not achieved generate a random triple, otherwise finish.
Check if the triple was not previously generated, if not proceed with step 3.
Conduct checks for first four sets. If no sums are contained within those sets, add triple and proceed with step 1.
However, I am not sure if this approach guarantees that you will get results (especially in small final sums).
So, I would add an counter, if too many consecutive attempts are not successful, then I would switch to brute force approach (which should not be problem if final sums are small and on other hand is very unlikely to happen if a final sum is large).
Overall, performance should be good.