How to pass vararg as array to function in Kotlin? - kotlin

I want to pass vararg from the buy function to the drive function
but I get
a compile error:
required Array<T> found Array<out T>
code:
class Car
fun buy(vararg cars: Car) {
drive(cars) //compile error
}
fun drive(cars: Array<Car>) {
//...
}

The precise error is:
Type mismatch.
Required: Array<Car>
Found: Array<out Car>
The problem is that when you have a vararg cars: Car function parameter, its type inside the function is Array<out Car>, which basically represents a read-only array of the arguments the function was called with - after all, it wouldn't really be a nice thing to start modifying the arguments you got as a vararg (function parameters in Kotlin are read-only vals, and this is something very similar).
But your drive function requires a regular Array<Car>, which of course is writable as well. So if you wish to keep these function signatures, you'll need to create a new array that contains everything from your read-only array. This can be created using the following syntax:
drive(arrayOf(*cars))
This calls the arrayOf function we usually create arrays with, which takes a vararg parameter, and uses the spread operator which is a way to pass in the elements of an array (which cars is, inside the buy function) as the vararg parameters (docs here).
While all this may sound complicated, it's actually a very efficient solution, as it just uses Array.copyOf under the hood in the bytecode.

Another solution would be to change drive to fun drive(Array<out Car>) { ... }. This of course means that the cars inside drive cannot be modified but avoids the copying.

fun foo(vararg strings: String): Array<out String> {
return strings
}
// Define a var
var yourVar: Array<out String> = foo("a", "b", "c")
// Use var in Java method `public void javaMethod(String... someParam)() {}`
javaMethod(*yourVar)

override fun checkMatch(vararg cards: SetsCard): Int {
return if (isSet(*cards)) 16 else -2
}
private fun isSet(vararg cards: SetsCard) : Boolean {
if (cards.size == 3) {
return true
}
return false
}

Essencially you need the vararg keywork before the variable name.
fun args(vararg cars: Car) {
//use cars as an array
}

Related

Get index of given element from array extension function kotlin

I'd like to understand Kotlin extension functions more and am trying to implement an extension function for a List, to get the index of an element by passing the value of the position (if that makes sense).
What I have:
fun List<String>.getItemPositionByName(item: String): Int {
this.forEachIndexed { index, it ->
if (it == item)
return index
}
return 0
}
Although this works fine, I would need the same thing for Int too.
To my question, is there a way of combining this into one extension function instead of two seperate ones? I acknowledge that this isn't a lot of code and wouldn't hurt to be duplicated but out of interest and for future references.
I'm aware of this question Extension functions for generic classes in Kotlin where the response is - as I understand it at least - "doesn't quite work like this, but I don't really need it for type but "just" for String and Int.
Kotlin supports what C++ people would refer to as specialization to a certain degree. It works just fine for very basic types like you're using so what you're asking of is definitely possible.
We can declare the following declarations. Of course you could just duplicate the code and you'd be on your way.
public fun List<String>.getItemPositionByName(item: String) = ...
public fun List<Int>.getItemPositionByName(item: String) = ...
If you're not a fan of repeating the code, the idiomatic way would be to make use of file-private functions and simply delegating to the private function.
private fun <T> getItemImpl(list: List<T>, item: T): Int {
list.forEachIndexed { index, it ->
if (it == item)
return index
}
return -1
}
public fun List<String>.getItemPositionByName(item: String) = getItemImpl(this, item)
public fun List<Int>.getItemPositionByName(item: Int) = getItemImpl(this, item)
This limits the getItemImpl which is fully generic to the current file you're in while the Int and String specializations are publicly available anywhere else.
Attempting to call getItemPositionByName on any list which is not of type List<Int> or List<String> will fail with a type error.
Kotlin Playground Link: https://pl.kotl.in/NvIRXwmpU
And just in case you weren't aware, the method you're implementing already exists in the standard library (https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/index-of.html)
The Kotlin standard library already has a function that does this: indexOf().
val one = listOf("a", "b", "c").indexOf("b")
check(one == 1)
One option is to look at the implementation of that function.
There is also the first() function, which you could use if you wanted write your own generic version:
fun <T> List<T>.getItemPositionByName(item: T) = withIndex()
.first { (_, value) -> item == value }
.index
fun main(args: Array<String>) {
val one = listOf("a", "b", "c").getItemPositionByName("b")
check(one == 1)
}
Or, rewriting your original version to use generics:
fun <T> List<T>.getItemPositionByName(item: T): Int {
this.forEachIndexed { index, it ->
if (it == item)
return index
}
return 0
}

Kotlin: generic cast function parameter

Taking my first steps in Kotlin, I'm struggling to find the correct signature for a function that receives an instance of a known class along with the desired output class and then looks in a map of converter lambdas whether the conversion can be done.
Here's an example for Long:
private fun <T> castLong(value: Long, clazz: Class<out T>): T {
// map lookup removed for simplicity
return when (clazz) {
String::class.java -> { value.toString() }
else -> { throw IllegalArgumentException("Unsupported Cast") }
}
}
Where T is the class of the desired return value - let's say String. One should be able to call castLong(aLongValue, String::class.java) and receive an instance of String.
But the compiler says:
Type mismatch: inferred type is String but T was expected
This seems like it should be possible as it is quite straightforward so far but even playing around with reified and other constructs didn't yield any better results.
It happens because it can't smart cast String to T, you have to manually cast it.
Furthermore, since you said you are taking your first steps in Kotlin, I leave here two other "advices" not strictly related to your question:
you can get the class of T making it reified
the brackets of a case using when aren't necessary if the case is one line
private inline fun <reified T> castLong(value: Long): T {
// map lookup removed for simplicity
return when (T::class.java) {
String::class.java -> value.toString()
else -> throw IllegalArgumentException("Unsupported Cast")
} as T
}

Why should I implement a function type as an interface in Kotlin

I came across something and wondered all the time why you should do this.
You implement an interface in Kotlin through a simple function type:
"It is possible for a class to implement a function type as if it were an interface. It must then supply an operator function called invoke with the given signature, and instances of that class may then be assigned to a variable of that function type:"
class Divider : (Int, Int) -> Double {
override fun invoke(numerator: Int, denominator: Int): Double = ...
}
But why should I do this? Why should I add an interface in that way? I think its only possible to add one function and not more.
Or is it an advantage that I can implement a function with a function body and not only the function head like in normal interfaces? I think it is possible in Java to add default methods to interfaces with a function body. So maybe it is something like that?
Function as a class can have state. For example you could store the last invocations and use the history as a cache:
class Divider : (Int, Int) -> Double {
val history = mutableMapOf<Pair<Int, Int>, Double>()
override fun invoke(numerator: Int, denominator: Int): Double {
return history.computeIfAbsent(Pair(numerator, denominator)) {
numerator.toDouble() / denominator.toDouble()
}
}
}
fun main() {
val divider = Divider()
println(divider(1,2))
println(divider(2,3))
println(divider.history)
}
It is probably not very useful to write a class that only implements a function type interface; however, it might be useful to write a class that can among other things be used in place of a function.
An example from the standard library is the KProperty1 interface. You can write code like this:
data class C(val id: Int, val name: String)
val objs = listOf(C(1, "name1"), C(2, "name2"), C(3, "name3"))
val ids = objs.map(C::id)
Here, C::id is a property reference of type KProperty1<C, Int>, and it can be used as an argument to List.map in place of a lambda because KProperty1<C, Int> extends (C) -> Int. However, KProperty1 has a lot of other uses besides being passed as a function.

Generic inline function

Let's say I have an object which helps me to deserialize other objects from storage:
val books: MutableList<Book> = deserializer.getBookList()
val persons: MutableList<Person> = deserializer.getPersonList()
The methods getBookList and getPersonList are extension functions I have written. Their logic is allmost the same so I thought I may can combine them into one method. My problem is the generic return type. The methods look like this:
fun DataInput.getBookList(): MutableList<Book> {
val list = mutableListOf<Book>()
val size = this.readInt()
for(i in 0 .. size) {
val item = Book()
item.readExternal(this)
list.add(item)
}
return list
}
Is there some Kotlin magic (maybe with inline functions) which I can use to detect the List type and generify this methods? I think the problem would be val item = T() which will not work for generic types, right? Or is this possible with inline functions?
You cannot call the constructor of a generic type, because the compiler can't guarantee that it has a constructor (the type could be from an interface). What you can do to get around this though, is to pass a "creator"-function as a parameter to your function. Like this:
fun <T> DataInput.getList(createT: () -> T): MutableList<T> {
val list = mutableListOf<T>()
val size = this.readInt()
for(i in 0 .. size) {
val item = createT()
/* Unless readExternal is an extension on Any, this function
* either needs to be passed as a parameter as well,
* or you need add an upper bound to your type parameter
* with <T : SomeInterfaceWithReadExternal>
*/
item.readExternal(this)
list.add(item)
}
return list
}
Now you can call the function like this:
val books: MutableList<Book> = deserializer.getList(::Book)
val persons: MutableList<Person> = deserializer.getList(::Person)
Note:
As marstran mentioned in a comment, this requires the class to have a zero-arg constructor to work, or it will throw an exception at runtime. The compiler will not warn you if the constructor doesn't exist, so if you pick this way, make sure you actually pass a class with a zero-arg constructor.
You can't initialize generic types, in Kotlin or Java. At least not in the "traditional" way. You can't do this:
val item = T()
In Java, you'd pass a Class<T> and get the constructor. Very basic example of that:
public <T> void x(Class<T> cls){
cls.getConstructor().newInstance(); // Obviously you'd do something with the return value, but this is just a dummy example
}
You could do the same in Kotlin, but Kotlin has a reified keyword that makes it slightly easier. This requires an inline function, which means you'd change your function to:
inline fun <reified T> DataInput.getBookList(): MutableList<T> { // Notice the `<reified T>`
val list = mutableListOf<T>() // Use T here
val size = this.readInt()
for(i in 0 .. size) {
// This is where the initialization happens; you get the constructor, and create a new instance.
// Also works with arguments, if you have any, but you used an empty one so I assume yours is empty
val item = T::class.java.getConstructor().newInstance()!!
item.readExternal(this) // However, this is tricky. See my notes below this code block
list.add(item)
}
return list
}
However, readExternal isn't present in Any, which will present problems. The only exception is if you have an extension function for either Any or a generic type with that name and input.
If it's specific to some classes, then you can't do it like this, unless you have a shared parent. For an instance:
class Book(){
fun readExternal(input: DataInput) { /*Foo bar */}
}
class Person(){
fun readExternal(input: DataInput) { /*Foo bar */}
}
Would not work. There's no shared parent except Any, and Any doesn't have readExternal. The method is manually defined in each of them.
You could create a shared parent, as an interface or abstract class (assuming there isn't one already), and use <reified T : TheSharedParent>, and you would have access to it.
You could of course use reflection, but it's slightly harder, and adds some exceptions you need to handle. I don't recommend doing this; I'd personally use a superclass.
inline fun <reified T> DataInput.getBookList(): MutableList<T> {
val list = mutableListOf<T>()
val size = this.readInt()
val method = try {
T::class.java.getMethod("readExternal", DataInput::class.java)
}catch(e: NoSuchMethodException){
throw RuntimeException()
}catch(e: SecurityException){
throw RuntimeException()// This could be done better; but error handling is up to you, so I'm just making a basic example
// The catch clauses are pretty self-explanatory; if something happens when trying to get the method itself,
// These two catch them
}
for(i in 0 .. size) {
val item: T = T::class.java.getConstructor().newInstance()!!
method.invoke(item, this)
list.add(item)
}
return list
}

Kotlin member and extension at the same time

In an attempt to understand more about Kotlin and play around with it, I'm developing a sample Android app where I can try different things.
However, even after searching on the topic for a while, I haven't been able to find a proper answer for the following issue :
Let's declare a (dummy) extension function on View class :
fun View.isViewVisibility(v: Int): Boolean = visibility == v
Now how can I reference this function from somewhere else to later call invoke() on it?
val f: (Int) -> Boolean = View::isViewVisibility
Currently gives me :
Error:(57, 35) Type mismatch: inferred type is KFunction2 but (Int) -> Boolean was
expectedError:(57, 41) 'isViewVisibility' is a member and an extension
at the same time. References to such elements are not allowed
Is there any workaround?
Thanks !
Extensions are resolved statically, where the first parameter accepts an instance of the receiver type. isViewVisibility actually accept two parameters, View and Int. So, the correct type of it should be (View, Int) -> Boolean, like this:
val f: (View, Int) -> Boolean = View::isViewVisibility
The error message states:
'isViewVisibility' is a member and an extension at the same time. References to such elements are not allowed
It's saying that the method is both an extension function, which is what you're wanting it to be, and a member. You don't show the entire context of your definition, but it probably looks something like this:
// MyClass.kt
class MyClass {
fun String.coolStringExtension() = "Cool $this"
val bar = String::coolStringExtension
}
fun main() {
print(MyClass().bar("foo"))
}
Kotlin Playground
As you can see the coolStringExtension is defined as a member of MyClass. This is what the error is referring to. Kotlin doesn't allow you to refer to extension function that is also a member, hence the error.
You can resolve this by defining the extension function at the top level, rather than as a member. For example:
// MyClass.kt
class MyClass {
val bar = String::coolStringExtension
}
fun String.coolStringExtension() = "Cool $this"
fun main() {
print(MyClass().bar("foo"))
}
Kotlin Playground
A better fit is the extension function type View.(Int) -> Boolean:
val f: View.(Int) -> Boolean = View::isViewVisibility
But actually the extension types are mostly interchangeable (assignment-compatible) with normal function types with the receiver being the first parameter:
View.(Int) -> Boolean ↔ (View, Int) -> Boolean
I faced the same problem when I declared extension function inside another class and try to pass that extension function as parameter.
I found a workaround by passing function with same signature as extension which in turn delegates to actual extension function.
MyUtils.kt:
object MyUtils {
//extension to MyClass, signature: (Int)->Unit
fun MyClass.extend(val:Int) {
}
}
AnyClass.kt:
//importing extension from MyUtils
import MyUtils.extend
// Assume you want to pass your extension function as parameter
fun someMethodWithLambda(func: (Int)->Unit) {}
class AnyClass {
fun someMethod() {
//this line throws error
someMethodWithLambda(MyClass::extend) //member and extension at the same time
//workaround
val myClassInstance = MyClass()
// you pass a proxy lambda which will call your extension function
someMethodWithLambda { someIntegerValue ->
myClassInstance.extend(someIntegerValue)
}
}
}
As a workaround you can create a separate normal function and invoke it from an inline extension method:
inline fun View.isVisibility(v: Int): Boolean = isViewVisibility(this, v)
fun isViewVisibility(v: View, k: Int): Boolean = (v.visibility == k)
You can't call directly the extension method because you don't have the implicit this object available.
Using either a type with two parameters (the first for the implicit receiver, as #Bakawaii has already mentioned) or an extension type should both work without any warnings at all.
Let's take this function as an example:
fun String.foo(f: Int) = true
You can use assign this to a property that has a two parameter function type like this:
val prop: (String, Int) -> Boolean = String::foo
fun bar() {
prop("bar", 123)
}
Or, you can use an extension function type, that you can then call with either of these two syntaxes:
val prop2: String.(Int) -> Boolean = String::foo
fun bar2() {
prop2("bar2", 123)
"bar2".prop2(123)
}
Again, the above should all run without any errors or warnings.