why the Elm Architecture is called TEA? - elm

I've seen this TEA acronym (?!) in many places all over the web - means elm architecture - but i don't understand what each initial stands for. Thanks.

TEA is an acronym of the name The Elm Architecture

A little resume, of course the answer short, correct and sweet was provided by #bdukes:
The Elm Architecture is a simple pattern for architecting webapps. It
is great for modularity, code reuse, and testing. Ultimately, it makes
it easy to create complex web apps that stay healthy as you refactor
and add features.
More info here

Related

Why was cakePHP designed to use Inheritance over Composition even though it's mostly considered a bad design?

CakePHP Applications being made in our company tends to become unmaintainable as it becomes more complex. I figured that one specific reason is inheritance which makes the functions in child classes depends a lot on it's parent classes and vice-versa (implementing template method pattern). Why is CakePHP designed this way and not friendly in using Dependency Injection, Strategies, or Factory patterns?
There is not such a bad design as you claim in the framework. Sure, there are probably things that could be done better but I would like to see a more substantial critic including solid arguments and examples. I assume you're not using the framework as it was intended.
Let me quote the first paragraph from this page.
According to Eric Evans, Domain-driven design (DDD) is not a technology or a methodology. It’s a different way of thinking about how to organize your applications and structure your code. This way of thinking complements very well the popular MVC architecture. The domain model provides a structural view of the system. Most of the time, applications don’t change, what changes is the domain. MVC, however, doesn’t really tell you how your model should be structured. That’s why some frameworks don’t force you to use a specific model structure, instead, they let your model evolve as your knowledge and expertise grows.
You're not showing code (for a reason?) so I guess your problem comes from stuffing everything into the table objects in src/Model/Table/ or doing something similar.
But you're totally free to create a folder structure like
/src/Service
/src/Model/Domain
and then simply instantiate services as you need them in your controller actions. A service could be for example \App\Service\User\Registration and using objects from App\Model\Domain\User.
I agree that the framework in fact doesn't provide any recommendation or template structure for how this could look like. For exactly this topic there is a discussion going on here. Because of a lack of such a structure I've started working on a plugin that provides this. The plugin doesn't require but suggest the usage of DI containers for the people who want them.
Given the whole fancy topic around DI and DDD so far I would say there is not the one way to get things right but different paths as long as the code is easy to maintain. And honestly, as long as this goal is archived I really don't care about how you call it. :) I think many people tend do make this topic to academic instead of simply trying to be practical.
Not everybody is even needing that structure. It depends on if you're building a RAD CRUD application or a more complex app. Not every application needs a DDD approach. There are so many shades of gray when it comes to design the business layer, no matter how the framework would do it, somebody would always complain about it.
I personally almost never missed a DI container in CakePHP, not even in the biggest project having more than ~560 database tables which was a hospital management solution and it just worked well.
I would suggest you to ask a more specific question about your approach how you structured your code and showing your structure and code and then asking for advice on how to improve it instead of blaming the tool you're using in the first place without providing context.
Unfortunately CakePHP v3 can not compare to the Zend3/Laminas, Symfony or Laravel.It is 7-8 years behind the other frameworks.If you are using cake for years or it is your 1st and last framework it is normal to not realise that.But if you have to use it after Zend 3... cake seems like really bad ecosystem.
Bad documentation
Bad ORM
Poor Routing system
Bad Templating engine
Bad idea to mix Data Mapper and Active Record
DIC is totally missing
Components - not good but not terrible
...
And many more thinks that should not be underestimated like - lack of GOOD tutorials, pluigns/addons/packages
The above thinks make developers to follow bad practices that adds a lot of technical depth.
If you care just for - it works! But not how it works and why it is bad, cake will fit ok for you.
Cake can not scale as good as Symfony/Laminas if you are doing big project.(yea AWS/GC can help for scaling a lot of thinks but not for scaling source code)
Cake doesn't allow you rapid development like Laravel/Symfony for decent project.
I'm wondering who and WHY would start a new project today using Cake as it has zero benefits over the other frameworks.
Probably only devs who used only Cake for last decade and do not want to start learning new technologies or devs that thinks SOLID is just a fancy hype with zero benefits like design patterns, DRY and KISS
CakePHP framework supplies user interaction with databases using Active record, it means that exist a high coupling between business layer and database layer which has negative effects in unit testing and because of that the framework is not friendly with Dependency Injection. The same issue happens with Factory pattern, high coupling mentioned before makes more difficult use simulated objects in unit testing.
Hope it helps!
Alberto

Implement a finite state automaton in OOP

I am thinking about implementing a program with finite state automaton in an OOP language like Java or C++.
What would you think is the best way to implement this with a manageable amount of available states, regarding to good software design?
Is it good to implement for each state an own class?
If yes, how to do the bridge between two states?
Thanks for any comment!
Is this just to flex your programming muscle, or for an actual project etc? In either case it depends on what you want the state machine for:
- is it to manage tasks in some sort of workflow
- is it to determine application flow state
- is it for a business rules engine etc
In the case of a project, I would suggest that, depending on what your target use is, you look for libraries in that domain. Java for example has MANY MANY libraries for workflow/busines flows, as well as tons of rules engines (Drools comes to mind right of the bat, although it is a complex behemoth)
Try this - the section on design is good and it shows a use for a fsm
http://www.ibm.com/developerworks/library/wa-finitemach1/
Another use I've seen is to implement managed objects for a computer service, with the transition "start" moving the object from the "down" to the "starting" state etc using an extennsion of the OMG managed object life-cycle
The dk.brics.automaton library is good implementation of FSA's in Java. It's build with performance in mind, so it trades in some OOP principles for speed, but i'd recommend you take a look at it.

Experiences with using Alloy in real-world projects

I have been interested in formal methods for some time. I have used formal methods to reason about some very specific sub-areas of a few projects I have been working on. I was never able to convince other team members to try the same let alone specify an entire domain with a formal method.
One method I have found particularly interesting is Alloy. I think that it may "scale" better as foundation for an entire project because it is conceptually and notationally very close to actual programming languages. Furthermore, the tools are quite solid so that the benefits of model verification are readily available.
I'd be very much interested to hear about any real-world experiences you folks might have had with using Alloy in your projects. Do you feel that it has helped you in designing a better domain model? Did find errors in your domain model during verification? Would you use it again?
I've used Alloy on a few projects and have found it helpful; on some but not all of those projects I have been able to persuade others involved to use Alloy as well, or at least to work with the Alloy models I wrote. These projects may or may not be what you have in mind in asking for 'real-world' projects, but they certainly took place in the part of the real world I work in.
In 2006 and 2007 I created a partial Alloy model for the then-current draft of the W3C XProc specification; as far as I could tell, most members of the working group never read the paper I wrote (at http://www.w3.org/XML/XProc/2006/12/alloy-models/models.html); they said "Oh, we changed that part of the spec last week, so what the model says is no longer relevant". But the paper did manage to persuade the editor of the spec that the abstract 'component' level described in the first draft of the spec was woefully underspecified and needed to be either fully specified or dropped. He dropped it, with (I think) good results for the readability and usability of the spec.
In 2010 I made an Alloy model of the XPath 1.0 data model, which uncovered some glitches in the specification. The reaction of most interested parties (including the W3C working group responsible for maintaining the XPath 1.0 spec) has, unfortunately, not been encouraging.
A research project I'm involved with has used Alloy to model the MLCD Overlap Corpus, a collection of sample documents and related information we are creating (hyperlinks suppressed at SO's insistence); the Alloy model found a couple of errors in our initial design for the corpus catalog, so it was well worth the effort.
And we have also used Alloy to formalize some modeling work we have done on the nature of transcription and on the extension of the type/token distinction to document structure (for our paper, look for the 2010 proceedings of Balisage: The Markup Conference). This lies a little bit outside Alloy's usual area of application, as it has nothing to do with software design, but Alloy's ability to check models for consistency and generate instances has been invaluable in showing us some of the logical consequences of this or that possible axiom for our model.
To answer your specific questions: yes, Alloy has helped me specify cleaner domain models, and yes, it has found errors and glitches. They have often been small, for the reasons Daniel Jackson explains in his book Software Abstractions: first, if you use models during design, you catch errors early, when everything is still small. And, second (in Jackson's words), "In hindsight, most software design issues are trivial."
He continues: "But if you don't address them head-on, trivial issues have a nasty habit of becoming nontrivial." My experience amply confirms this. Much better to head off such problems early. So yes, I will use Alloy again.
Yes, I've used Alloy and it's cousins industrially. Alloy has been most helpful in convincing me that my models weren't wildly wrong---or rather, showing me where they were wrong and gave rise to silly results. Other more specific tools, like Song's Athena and Guttman and Ramsdell's CPSA have been more useful in their narrower domains. What more would you like to hear about?
Belatedly adding to this thread... Eunsuk Kang has recently applied Alloy to perform security analyses of web APIs for some start ups (following many applications of Alloy in security such as Apurva's analysis of OAuth and Barth et al's analysis of browser based security mechanisms for CSRF etc); Pamela Zave has been working on an impressive analysis of Chord, a peer to peer storage system, and has recently written up a fix to the original algorithm.

What are the most valuable parts of Computer Science studies for Cocoa developers?

What are the most valuable parts of Computer Science studies for Cocoa developers?
Another way I might word this question is:
If I’m not going to go to school for Computer Science but want to be a developer working primarily with Cocoa, what are the things I should make sure I learn that I otherwise might miss by being self-taught, and be worse off for it.
Update: Replaced the term "professional Cocoa developer" with "developer primarily working with Cocoa", in hopes that the intent of my question is somehow clearer.
To be clear, I've been working with Cocoa for two years and am comfortable with Objective-C and the Cocoa frameworks, as well as Cocoa design patterns and the developer toolset, and thus am for the most part fluent with the Mac and iPhone platforms. But I have wondered whether I'm missing important CS or SE elements due to being self taught/no formal training, and not coming from other languages or platforms.
This question is for Cocoa developers.
There are many, but things that come to mind imediatly
-Design Patterns (the Cocoa framework relies on many Design Patterns, if you follow them it will make your life very easy, most obvious example is MVC)
-Algorithms and Data structures(this applies to any framework really)
-Memory Management (No garbage collection on the iphone!)
I would question whether there's really such a thing as a "professional Cocoa developer" (from a philosophical standpoint), or if you would want to be one. There's "professional developer", who may work with Cocoa primarily. A professional developer is language-agnostic and as such has a solid career ahead of him/her. A language- or platform-specific hacker has very limited usefulness.
The question to ask is do you want to be a developer or not? If there aren't any good Cocoa jobs available at the moment, or Cocoa is replaced by something newer and better and very different, a professional developer changes gears and follows. Are you OK with that?
If so, a computer science degree definitely cannot hurt. If not, you should probably not put all your eggs in the Cocoa basket and pursue a non-CS degree.
In addition to what's been pointed out already, I highly recommend reading "The Pragmatic Programmer". It contains a wealth of information on how to write software, how to manage projects, and how to develop your career, advice that goes well beyond the documentation you look at every day in Xcode. Some of the topics they cover are ones that you might have been exposed to during a standard computer science degree.
"Professional" is a relative term.. but anyways, this is what i had to go through so that i could easily learn a new language anytime i want and also master it:
started by learning a simple console language (pascal or c++, but i consider pascal being simpler than c/c++), then learned another language just to see if i can do it (c++)
i learned a lot of algorithms and data structures, until i was able to recreate them and even create my own
i moved to a visual approach on programming with Visual Basic 6 (another simple one to start with), and tried to copy lots of apps just to see if i can do it
i learned about Object-Oriented Programming and finished by mastering it
from this step on, learning a new language was like a hobby, like playing!
then i wanted to learn some different topics, like design patterns, multithreading, and so on..
moved from windows to mac, and started learning objective-c: because i already knew lots of languages, it took me 5 days to learn objective-c, and yes, i took breaks like any human being :P
after i learned obj-c, i now had to learn cocoa... this one took me a lot of time to learn, and i still don't know it all.. but i do know most of it :D
What are the most valuable parts of Computer Science studies for Cocoa developers?
Learn that it's important to understand the differences between languages, not learning a particular language.
Are you writing numerical method solvers with a Cocoa frontend? You'll want to take numerical methods. Writing a 3-D plugin with a Cocoa UI? Better learn about Catmull-Rom splines.
A good understanding of computer graphics is required if you want to make some good looking animations :)

How do you write good highly useful general purpose libraries?

I asked this question about Microsoft .NET Libraries and the complexity of its source code. From what I'm reading, writing general purpose libraries and writing applications can be two different things. When writing libraries, you have to think about the client who could literally be everyone (supposing I release the library for use in the general public).
What kind of practices or theories or techniques are useful when learning to write libraries? Where do you learn to write code like the one in the .NET library? This looks like a "black art" which I don't know too much about.
That's a pretty subjective question, but here's on objective answer. The Framework Design Guidelines book (be sure to get the 2nd edition) is a very good book about how to write effective class libraries. The content is very good and the often dissenting annotations are thought-provoking. Every shop should have a copy of this book available.
You definitely need to watch Josh Bloch in his presentation How to Design a Good API & Why it Matters (1h 9m long). He is a Java guru but library design and object orientation are universal.
One piece of advice often ignored by library authors is to internalize costs. If something is hard to do, the library should do it. Too often I've seen the authors of a library push something hard onto the consumers of the API rather than solving it themselves. Instead, look for the hardest things and make sure the library does them or at least makes them very easy.
I will be paraphrasing from Effective C++ by Scott Meyers, which I have found to be the best advice I got:
Adhere to the principle of least astonishment: strive to provide classes whose operators and functions have a natural syntax and an intuitive semantics. Preserve consistency with the behavior of the built-in types: when in doubt, do as the ints do.
Recognize that anything somebody can do, they will do. They'll throw exceptions, they'll assign objects to themselves, they'll use objects before giving them values, they'll give objects values and never use them, they'll give them huge values, they'll give them tiny values, they'll give them null values. In general, if it will compile, somebody will do it. As a result, make your classes easy to use correctly and hard to use incorrectly. Accept that clients will make mistakes, and design your classes so you can prevent, detect, or correct such errors.
Strive for portable code. It's not much harder to write portable programs than to write unportable ones, and only rarely will the difference in performance be significant enough to justify unportable constructs.
Even programs designed for custom hardware often end up being ported, because stock hardware generally achieves an equivalent level of performance within a few years. Writing portable code allows you to switch platforms easily, to enlarge your client base, and to brag about supporting open systems. It also makes it easier to recover if you bet wrong in the operating system sweepstakes.
Design your code so that when changes are necessary, the impact is localized. Encapsulate as much as you can; make implementation details private.
Edit: I just noticed I very nearly duplicated what cherouvim had posted; sorry about that! But turns out we're linking to different speeches by Bloch, even if the subject is exactly the same. (cherouvim linked to a December 2005 talk, I to January 2007 one.) Well, I'll leave this answer here — you're probably best off by watching both and seeing how his message and way of presenting it has evolved :)
FWIW, I'd like to point to this Google Tech Talk by Joshua Bloch, who is a greatly respected guy in the Java world, and someone who has given speeches and written extensively on API design. (Oh, and designed some exceptionally good general purpose libraries, like the Java Collections Framework!)
Joshua Bloch, Google Tech Talks, January 24, 2007:
"How To Design A Good API and Why it
Matters" (the video is about 1 hour long)
You can also read many of the same ideas in his article Bumper-Sticker API Design (but I still recommend watching the presentation!)
(Seeing you come from the .NET side, I hope you don't let his Java background get in the way too much :-) This really is not Java-specific for the most part.)
Edit: Here's another 1½ minute bit of wisdom by Josh Bloch on why writing libraries is hard, and why it's still worth putting effort in it (economies of scale) — in a response to a question wondering, basically, "how hard can it be". (Part of a presentation about the Google Collections library, which is also totally worth watching, but more Java-centric.)
Krzysztof Cwalina's blog is a good starting place. His book, Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable .NET Libraries, is probably the definitive work for .NET library design best practices.
http://blogs.msdn.com/kcwalina/
The number one rule is to treat API design just like UI design: gather information about how your users really use your UI/API, what they find helpful and what gets in their way. Use that information to improve the design. Start with users who can put up with API churn and gradually stabilize the API as it matures.
I wrote a few notes about what I've learned about API design here: http://www.natpryce.com/articles/000732.html
I'd start looking more into design patterns. You'll probably not going to find much use for some of them, but as you get deeper into your library design the patterns will become more applicable. I'd also pick up a copy of NDepend - a great code measuring utility which may help you decouple things better. You can use .NET libraries as an example, but, personally, i don't find them to be great design examples mostly due to their complexities. Also, start looking at some open source projects to see how they're layered and structured.
A couple of separate points:
The .NET Framework isn't a class library. It's a Framework. It's a set of types meant to not only provide functionality, but to be extended by your own code. For instance, it does provide you with the Stream abstract class, and with concrete implementations like the NetworkStream class, but it also provides you the WebRequest class and the means to extend it, so that WebRequest.Create("myschema://host/more") can produce an instance of your own class deriving from WebRequest, which can have its own GetResponse method returning its own class derived from WebResponse, such that calling GetResponseStream will return your own class derived from Stream!
And your callers will not need to know this is going on behind the scenes!
A separate point is that for most developers, creating a reusable library is not, and should not be the goal. The goal should be to write the code necessary to meet requirements. In the process, reusable code may be found. In that case, it should be refactored out into a separate library, where it can be reused in the future.
I go further than that (when permitted). I will usually wait until I find two pieces of code that actually do the same thing, or which overlap. Presumably both pieces of code have passed all their unit tests. I will then factor out the common code into a separate class library and run all the unit tests again. Assuming that they still pass, I've begun the creation of some reusable code that works (since the unit tests still pass).
This is in contrast to a lesson I learned in school, when the result of an entire project was a beautiful reusable library - with no code to reuse it.
(Of course, I'm sure it would have worked if any code had used it...)