Upsampling by decimal factor in Keras - tensorflow

I want to use an upsampling 2D layer in keras so that I can increase the image size by a decimal factor (in this case from [213,213] to [640,640]). The layer is compiled as expected, but when I want to train or predict on real images, they are upsampled only by the closest integer to the input factor. Any idea? Details below:
Network:
mp_size = (3,3)
inputs = Input(input_data.shape[1:])
lay1 = Conv2D(32, (3,3), strides=(1,1), activation='relu', padding='same', kernel_initializer='glorot_normal')(inputs)
lay2 = MaxPooling2D(pool_size=mp_size)(lay1)
lay3 = Conv2D(32, (3,3), strides=(1,1), activation='relu', padding='same', kernel_initializer='glorot_normal')(lay2)
size1=lay3.get_shape()[1:3]
size2=lay1.get_shape()[1:3]
us_size = size2[0].value/size1[0].value, size2[1].value/size1[1].value
lay4 = Concatenate(axis=-1)([UpSampling2D(size=us_size)(lay3),lay1])
lay5 = Conv2D(1, (1, 1), strides=(1,1), activation='sigmoid')(lay4)
model = Model(inputs=inputs, outputs=lay5)
Network summary when I use model.summary() :
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_4 (InputLayer) (None, 640, 640, 2) 0
____________________________________________________________________________________________________
conv2d_58 (Conv2D) (None, 640, 640, 32) 608 input_4[0][0]
____________________________________________________________________________________________________
max_pooling2d_14 (MaxPooling2D) (None, 213, 213, 32) 0 conv2d_58[0][0]
____________________________________________________________________________________________________
conv2d_59 (Conv2D) (None, 213, 213, 32) 9248 max_pooling2d_14[0][0]
____________________________________________________________________________________________________
up_sampling2d_14 (UpSampling2D) (None, 640.0, 640.0, 0 conv2d_59[0][0]
____________________________________________________________________________________________________
concatenate_14 (Concatenate) (None, 640.0, 640.0, 0 up_sampling2d_14[0][0]
conv2d_58[0][0]
____________________________________________________________________________________________________
conv2d_60 (Conv2D) (None, 640.0, 640.0, 65 concatenate_14[0][0]
====================================================================================================
Total params: 9,921
Trainable params: 9,921
Non-trainable params: 0
Error when training the network:
InvalidArgumentError: ConcatOp : Dimensions of inputs should match: shape[0] = [1,639,639,32] vs. shape[1] = [1,640,640,32]
[[Node: concatenate_14/concat = ConcatV2[N=2, T=DT_FLOAT, Tidx=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](up_sampling2d_14/ResizeNearestNeighbor, conv2d_58/Relu, concatenate_14/concat/axis)]]

It can be resolved by using the below code:
from keras.layers import UpSampling2D
from keras.utils.generic_utils import transpose_shape
class UpSamplingUnet(UpSampling2D):
def compute_output_shape(self, input_shape):
size_all_dims = (1,) + self.size + (1,)
spatial_axes = list(range(1, 1 + self.rank))
size_all_dims = transpose_shape(size_all_dims,
self.data_format,
spatial_axes)
output_shape = list(input_shape)
for dim in range(len(output_shape)):
if output_shape[dim] is not None:
output_shape[dim] *= size_all_dims[dim]
output_shape[dim]=int(output_shape[dim])
return tuple(output_shape)
Then alter UpSampling2D(size=us_size) to UpSamplingUnet(size=us_size).

Related

ValueError: `logits` and `labels` must have the same shape, received ((None, 10) vs (None, 1))

I am running an Involution Model (based of this example), and I am constantly running into errors during the training stage. This is my error:
ValueError: `logits` and `labels` must have the same shape, received ((None, 10) vs (None, 1)).
Below is the relevant code for dataset loading:
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_ds = train_datagen.flow_from_directory(
'data/train',
target_size=(150, 150),
batch_size=128,
class_mode='binary')
test_ds = test_datagen.flow_from_directory(
'data/test',
target_size=(150, 150),
batch_size=64,
class_mode='binary')`
And this is the code for training:
print("building the involution model...")
inputs = keras.Input(shape=(224, 224, 3))
x, _ = Involution(channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_1")(inputs)
x = keras.layers.ReLU()(x)
x = keras.layers.MaxPooling2D((2, 2))(x)
x, _ = Involution(
channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_2")(x)
x = keras.layers.ReLU()(x)
x = keras.layers.MaxPooling2D((2, 2))(x)
x, _ = Involution(
channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_3")(x)
x = keras.layers.ReLU()(x)
x = keras.layers.Flatten()(x)
x = keras.layers.Dense(64, activation="relu")(x)
outputs = keras.layers.Dense(10)(x)
inv_model = keras.Model(inputs=[inputs], outputs=[outputs], name="inv_model")
print("compiling the involution model...")
inv_model.compile(
optimizer="adam",
loss=keras.losses.BinaryCrossentropy(from_logits=True),
metrics=["accuracy"],
)
print("inv model training...")
inv_hist = inv_model.fit(train_ds, epochs=20, validation_data=test_ds)`
The model itself the same used by Keras, and I have not changed anything except to use my own dataset instead of the CIFAR dataset (model works for me with this dataset). So I am sure there is an error in my data loading, but I am unable to identify what that is.
Model Summary:
Model: "inv_model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_14 (InputLayer) [(None, 224, 224, 3)] 0
inv_1 (Involution) ((None, 224, 224, 3), 26
(None, 224, 224, 9, 1,
1))
re_lu_39 (ReLU) (None, 224, 224, 3) 0
max_pooling2d_26 (MaxPoolin (None, 112, 112, 3) 0
g2D)
inv_2 (Involution) ((None, 112, 112, 3), 26
(None, 112, 112, 9, 1,
1))
re_lu_40 (ReLU) (None, 112, 112, 3) 0
max_pooling2d_27 (MaxPoolin (None, 56, 56, 3) 0
g2D)
inv_3 (Involution) ((None, 56, 56, 3), 26
(None, 56, 56, 9, 1, 1)
)
re_lu_41 (ReLU) (None, 56, 56, 3) 0
flatten_15 (Flatten) (None, 9408) 0
dense_26 (Dense) (None, 64) 602176
dense_27 (Dense) (None, 10) 650
=================================================================
When you called the train_datagen.flow_from_directory() function, you used class_mode='binary' which means you will have the labels of your images as 0 and 1 only, whereas you are have total 10 predictions i.e. 10 neurons in your final output layer. Hence the labels and logits dosen't match.
Solution: Use class_mode='categorical' which means that there will be as many labels as the number of classes. Do the same in test_datagen as well.

ValueError: Input 0 is incompatible with layer model: expected shape=(None, 14999, 7), found shape=(None, 7)

I'm trying to apply Conv1D layers for a classification model which has a numeric dataset. The neural network of my model is as follows:
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv1D(8,kernel_size = 3, strides = 1,padding = 'valid', activation = 'relu',input_shape = (14999,7)))
model.add(tf.keras.layers.Conv1D(16,kernel_size = 3, strides = 1,padding = 'valid', activation = 'relu'))
model.add(tf.keras.layers.MaxPooling1D(2))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Conv1D(32,kernel_size = 3, strides = 1,padding = 'valid', activation = 'relu'))
model.add(tf.keras.layers.Conv1D(64,kernel_size = 3, strides = 1,padding = 'valid', activation = 'relu'))
model.add(tf.keras.layers.MaxPooling1D(2))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Conv1D(128,kernel_size = 3, strides = 1,padding = 'valid', activation = 'relu'))
model.add(tf.keras.layers.Conv1D(256,kernel_size = 3, strides = 1,padding = 'valid', activation = 'relu'))
model.add(tf.keras.layers.MaxPooling1D(2))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(512,activation = 'relu'))
model.add(tf.keras.layers.Dense(128,activation = 'relu'))
model.add(tf.keras.layers.Dense(32,activation = 'relu'))
model.add(tf.keras.layers.Dense(3, activation = 'softmax'))
And the model's input shape is (14999, 7).
model.summary() gives the following output
Model: "sequential_8"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d_24 (Conv1D) (None, 14997, 8) 176
_________________________________________________________________
conv1d_25 (Conv1D) (None, 14995, 16) 400
_________________________________________________________________
max_pooling1d_10 (MaxPooling (None, 7497, 16) 0
_________________________________________________________________
dropout_9 (Dropout) (None, 7497, 16) 0
_________________________________________________________________
conv1d_26 (Conv1D) (None, 7495, 32) 1568
_________________________________________________________________
conv1d_27 (Conv1D) (None, 7493, 64) 6208
_________________________________________________________________
max_pooling1d_11 (MaxPooling (None, 3746, 64) 0
_________________________________________________________________
dropout_10 (Dropout) (None, 3746, 64) 0
_________________________________________________________________
conv1d_28 (Conv1D) (None, 3744, 128) 24704
_________________________________________________________________
conv1d_29 (Conv1D) (None, 3742, 256) 98560
_________________________________________________________________
max_pooling1d_12 (MaxPooling (None, 1871, 256) 0
_________________________________________________________________
dropout_11 (Dropout) (None, 1871, 256) 0
_________________________________________________________________
flatten_3 (Flatten) (None, 478976) 0
_________________________________________________________________
dense_14 (Dense) (None, 512) 245236224
_________________________________________________________________
dense_15 (Dense) (None, 128) 65664
_________________________________________________________________
dense_16 (Dense) (None, 32) 4128
_________________________________________________________________
dense_17 (Dense) (None, 3) 99
=================================================================
Total params: 245,437,731
Trainable params: 245,437,731
Non-trainable params: 0
The code for model fitting is:
model.compile(loss = 'sparse_categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
history = model.fit(xtrain_scaled, ytrain_scaled, epochs = 30, batch_size = 5, validation_data = (xval_scaled, yval_scaled))
While executing, I'm facing the following error:
ValueError: Input 0 is incompatible with layer model: expected shape=(None, 14999, 7), found shape=(None, 7)
Could anyone help to sort out this issue?
TL;DR:
Change
model.add(tf.keras.layers.Conv1D(8,kernel_size = 3, strides = 1,padding = 'valid', activation = 'relu',input_shape = (14999,7)))
to
model.add(tf.keras.layers.Conv1D(8,kernel_size = 3, strides = 1,padding = 'valid', activation = 'relu',input_shape = (7)))
Full answer:
Assumption: I am guessing the reason you chose to write 14999 in the input shape is because that's your batch size / total size of training data
Problem with this:
Tensorflow assumes the input shape does not include the batch size
By specifying a 2D input_shape you're making Tensorflow expect a 3D input of shape (Batch_size, 14999, 7). But your input is clearly of size (Batch_size, 7)
Solution:
Change the shape from (14999, 7) to just (7)
TF will now be expecting the same shape that you are providing
PS: Don't be worried about informing your model of how many training examples you have in the dataset. TF Keras works with the assumption it can be shown unlimited training examples.

How to use model subclassing in Keras?

Having the following model written in the sequential API:
config = {
'learning_rate': 0.001,
'lstm_neurons':32,
'lstm_activation':'tanh',
'dropout_rate': 0.08,
'batch_size': 128,
'dense_layers':[
{'neurons': 32, 'activation': 'relu'},
{'neurons': 32, 'activation': 'relu'},
]
}
def get_model(num_features, output_size):
opt = Adam(learning_rate=0.001)
model = Sequential()
model.add(Input(shape=[None,num_features], dtype=tf.float32, ragged=True))
model.add(LSTM(config['lstm_neurons'], activation=config['lstm_activation']))
model.add(BatchNormalization())
if 'dropout_rate' in config:
model.add(Dropout(config['dropout_rate']))
for layer in config['dense_layers']:
model.add(Dense(layer['neurons'], activation=layer['activation']))
model.add(BatchNormalization())
if 'dropout_rate' in layer:
model.add(Dropout(layer['dropout_rate']))
model.add(Dense(output_size, activation='sigmoid'))
model.compile(loss='mse', optimizer=opt, metrics=['mse'])
print(model.summary())
return model
When using a distributed training framework, I need to convert the syntax to use model subclassing instead.
I've looked at the docs but couldn't figure out how to do it.
Here is one equivalent subclassed implementation. Though I didn't test.
import tensorflow as tf
# your config
config = {
'learning_rate': 0.001,
'lstm_neurons':32,
'lstm_activation':'tanh',
'dropout_rate': 0.08,
'batch_size': 128,
'dense_layers':[
{'neurons': 32, 'activation': 'relu'},
{'neurons': 32, 'activation': 'relu'},
]
}
# Subclassed API Model
class MySubClassed(tf.keras.Model):
def __init__(self, output_size):
super(MySubClassed, self).__init__()
self.lstm = tf.keras.layers.LSTM(config['lstm_neurons'],
activation=config['lstm_activation'])
self.bn = tf.keras.layers.BatchNormalization()
if 'dropout_rate' in config:
self.dp1 = tf.keras.layers.Dropout(config['dropout_rate'])
self.dp2 = tf.keras.layers.Dropout(config['dropout_rate'])
self.dp3 = tf.keras.layers.Dropout(config['dropout_rate'])
for layer in config['dense_layers']:
self.dense1 = tf.keras.layers.Dense(layer['neurons'],
activation=layer['activation'])
self.bn1 = tf.keras.layers.BatchNormalization()
self.dense2 = tf.keras.layers.Dense(layer['neurons'],
activation=layer['activation'])
self.bn2 = tf.keras.layers.BatchNormalization()
self.out = tf.keras.layers.Dense(output_size,
activation='sigmoid')
def call(self, inputs, training=True, **kwargs):
x = self.lstm(inputs)
x = self.bn(x)
if 'dropout_rate' in config:
x = self.dp1(x)
x = self.dense1(x)
x = self.bn1(x)
if 'dropout_rate' in config:
x = self.dp2(x)
x = self.dense2(x)
x = self.bn2(x)
if 'dropout_rate' in config:
x = self.dp3(x)
return self.out(x)
# A convenient way to get model summary
# and plot in subclassed api
def build_graph(self, raw_shape):
x = tf.keras.layers.Input(shape=(None, raw_shape),
ragged=True)
return tf.keras.Model(inputs=[x],
outputs=self.call(x))
Build and compile the mdoel
s = MySubClassed(output_size=1)
s.compile(
loss = 'mse',
metrics = ['mse'],
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001))
Pass some tensor to create weights (check).
raw_input = (16, 16, 16)
y = s(tf.ones(shape=(raw_input)))
print("weights:", len(s.weights))
print("trainable weights:", len(s.trainable_weights))
weights: 21
trainable weights: 15
Summary and Plot
Summarize and visualize the model graph.
s.build_graph(16).summary()
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, None, 16)] 0
_________________________________________________________________
lstm (LSTM) (None, 32) 6272
_________________________________________________________________
batch_normalization (BatchNo (None, 32) 128
_________________________________________________________________
dropout (Dropout) (None, 32) 0
_________________________________________________________________
dense_2 (Dense) (None, 32) 1056
_________________________________________________________________
batch_normalization_3 (Batch (None, 32) 128
_________________________________________________________________
dropout_1 (Dropout) (None, 32) 0
_________________________________________________________________
dense_3 (Dense) (None, 32) 1056
_________________________________________________________________
batch_normalization_4 (Batch (None, 32) 128
_________________________________________________________________
dropout_2 (Dropout) (None, 32) 0
_________________________________________________________________
dense_4 (Dense) (None, 1) 33
=================================================================
Total params: 8,801
Trainable params: 8,609
Non-trainable params: 192
tf.keras.utils.plot_model(
s.build_graph(16),
show_shapes=True,
show_dtype=True,
show_layer_names=True,
rankdir="TB",
)

Change Model input_shape but got an : ValueError: Input 0 of layer dense_44 is incompatible with the layer

I am new to python and DL.
Please help me to correct the error.
This class was originly created with mnist dataset (28 x 28) I tried to adapt it to my work and the image that I am using are (224 x 224). I changed the input image shape but still have the incompatible shape image and the model still use the old shapes of mnist.
Knowng that the that I am using: X_train=(676, 224, 224)/y_train(676,)/X_test(170, 224, 224)/y_test(170,)
The code :
from __future__ import print_function, division
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply, concatenate
from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D, Lambda
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras.utils import to_categorical
import keras.backend as K
import matplotlib.pyplot as plt
import numpy as np
class INFOGAN():
def __init__(self):
self.img_rows = 224
self.img_cols = 224
self.channels = 1
self.num_classes = 3
self.img_shape = (self.img_rows, self.img_cols, self.channels)
self.latent_dim = 72
optimizer = Adam(0.0002, 0.5)
losses = ['binary_crossentropy', self.mutual_info_loss]
# Build and the discriminator and recognition network
self.discriminator, self.auxilliary = self.build_disk_and_q_net()
self.discriminator.compile(loss=['binary_crossentropy'],
optimizer=optimizer,
metrics=['accuracy'])
# Build and compile the recognition network Q
self.auxilliary.compile(loss=[self.mutual_info_loss],
optimizer=optimizer,
metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# The generator takes noise and the target label as input
# and generates the corresponding digit of that label
gen_input = Input(shape=(self.latent_dim,))
img = self.generator(gen_input)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The discriminator takes generated image as input and determines validity
valid = self.discriminator(img)
# The recognition network produces the label
target_label = self.auxilliary(img)
# The combined model (stacked generator and discriminator)
self.combined = Model(gen_input, [valid, target_label])
self.combined.compile(loss=losses,
optimizer=optimizer)
def build_generator(self):
model = Sequential()
model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((7, 7, 128)))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(self.channels, kernel_size=3, padding='same'))
model.add(Activation("tanh"))
gen_input = Input(shape=(self.latent_dim,))
img = model(gen_input)
model.summary()
return Model(gen_input, img)
def build_disk_and_q_net(self):
img = Input(shape=self.img_shape)
# Shared layers between discriminator and recognition network
model = Sequential()
model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
model.add(ZeroPadding2D(padding=((0,1),(0,1))))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(256, kernel_size=3, strides=2, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(512, kernel_size=3, strides=2, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Flatten())
img_embedding = model(img)
# Discriminator
validity = Dense(1, activation='sigmoid')(img_embedding)
# Recognition
q_net = Dense(128, activation='relu')(img_embedding)
label = Dense(self.num_classes, activation='softmax')(q_net)
# Return discriminator and recognition network
return Model(img, validity), Model(img, label)
def mutual_info_loss(self, c, c_given_x):
"""The mutual information metric we aim to minimize"""
eps = 1e-8
conditional_entropy = K.mean(- K.sum(K.log(c_given_x + eps) * c, axis=1))
entropy = K.mean(- K.sum(K.log(c + eps) * c, axis=1))
return conditional_entropy + entropy
def sample_generator_input(self, batch_size):
# Generator inputs
sampled_noise = np.random.normal(0, 1, (batch_size, 62))
sampled_labels = np.random.randint(0, self.num_classes, batch_size).reshape(-1, 1)
sampled_labels = to_categorical(sampled_labels, num_classes=self.num_classes)
return sampled_noise, sampled_labels
def train(self, epochs, batch_size=128, sample_interval=50):
# Rescale -1 to 1
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
X_train = np.expand_dims(X_train, axis=3)
y_train = y_train.reshape(-1, 1)
# Adversarial ground truths
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random half batch of images
idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs = X_train[idx]
# Sample noise and categorical labels
sampled_noise, sampled_labels = self.sample_generator_input(batch_size)
gen_input = np.concatenate((sampled_noise, sampled_labels), axis=1)
# Generate a half batch of new images
gen_imgs = self.generator.predict(gen_input)
# Train on real and generated data
d_loss_real = self.discriminator.train_on_batch(imgs, valid)
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
# Avg. loss
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator and Q-network
# ---------------------
g_loss = self.combined.train_on_batch(gen_input, [valid, sampled_labels])
# Plot the progress
print ("%d [D loss: %.2f, acc.: %.2f%%] [Q loss: %.2f] [G loss: %.2f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss[1], g_loss[2]))
# If at save interval => save generated image samples
if epoch % sample_interval == 0:
self.sample_images(epoch)
def sample_images(self, epoch):
r, c = 10, 10
fig, axs = plt.subplots(r, c)
for i in range(c):
sampled_noise, _ = self.sample_generator_input(c)
label = to_categorical(np.full(fill_value=i, shape=(r,1)), num_classes=self.num_classes)
gen_input = np.concatenate((sampled_noise, label), axis=1)
gen_imgs = self.generator.predict(gen_input)
gen_imgs = 0.5 * gen_imgs + 0.5
for j in range(r):
axs[j,i].imshow(gen_imgs[j,:,:,0], cmap='gray')
axs[j,i].axis('off')
fig.savefig("images/%d.png" % epoch)
plt.close()
def save_model(self):
def save(model, model_name):
model_path = "saved_model/%s.json" % model_name
weights_path = "saved_model/%s_weights.hdf5" % model_name
options = {"file_arch": model_path,
"file_weight": weights_path}
json_string = model.to_json()
open(options['file_arch'], 'w').write(json_string)
model.save_weights(options['file_weight'])
save(self.generator, "generator")
save(self.discriminator, "discriminator")
if __name__ == '__main__':
infogan = INFOGAN()
infogan.train(epochs=50000, batch_size=128, sample_interval=50)
the error :
Model: "sequential_23"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_47 (Dense) (None, 6272) 457856
_________________________________________________________________
reshape_11 (Reshape) (None, 7, 7, 128) 0
_________________________________________________________________
batch_normalization_87 (Batc (None, 7, 7, 128) 512
_________________________________________________________________
up_sampling2d_40 (UpSampling (None, 14, 14, 128) 0
_________________________________________________________________
conv2d_99 (Conv2D) (None, 14, 14, 128) 147584
_________________________________________________________________
activation_42 (Activation) (None, 14, 14, 128) 0
_________________________________________________________________
batch_normalization_88 (Batc (None, 14, 14, 128) 512
_________________________________________________________________
up_sampling2d_41 (UpSampling (None, 28, 28, 128) 0
_________________________________________________________________
conv2d_100 (Conv2D) (None, 28, 28, 64) 73792
_________________________________________________________________
activation_43 (Activation) (None, 28, 28, 64) 0
_________________________________________________________________
batch_normalization_89 (Batc (None, 28, 28, 64) 256
_________________________________________________________________
conv2d_101 (Conv2D) (None, 28, 28, 1) 577
_________________________________________________________________
activation_44 (Activation) (None, 28, 28, 1) 0
=================================================================
Total params: 681,089
Trainable params: 680,449
Non-trainable params: 640
_________________________________________________________________
WARNING:tensorflow:Model was constructed with shape (None, 224, 224, 1) for input Tensor("input_22:0", shape=(None, 224, 224, 1), dtype=float32), but it was called on an input with incompatible shape (None, 28, 28, 1).
WARNING:tensorflow:Model was constructed with shape (None, 224, 224, 1) for input Tensor("conv2d_95_input:0", shape=(None, 224, 224, 1), dtype=float32), but it was called on an input with incompatible shape (None, 28, 28, 1).
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-45-60a1c6b0bc8b> in <module>()
225
226 if __name__ == '__main__':
--> 227 infogan = INFOGAN()
228 infogan.train(epochs=50000, batch_size=128, sample_interval=50)
7 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/input_spec.py in assert_input_compatibility(input_spec, inputs, layer_name)
214 ' incompatible with the layer: expected axis ' + str(axis) +
215 ' of input shape to have value ' + str(value) +
--> 216 ' but received input with shape ' + str(shape))
217 # Check shape.
218 if spec.shape is not None:
ValueError: Input 0 of layer dense_44 is incompatible with the layer: expected axis -1 of input shape to have value 115200 but received input with shape [None, 2048]
You forgot to change the architecture of the generator. The generator's output shape and the discriminator's input shape have to match. That's what causing the error.
To fix it, you need to fix the architecture. The generator produces images in shape (28, 28, 1), but you want (224, 224, 1). The shape the architecture produces is the result of the architecture itself and its parameters.
So I added two Upsampling layers and changed the size of the other layers to match the discriminator's output.
Also, I removed ZeroPadding2D layer from discriminator, since it made the shape odd (15, 15, ..), and therefore it was impossible to match the same size in the generator.
Here's the code:
def build_generator(self):
model = Sequential()
model.add(Dense(512 * 14 * 14, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((14, 14, 512)))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(256, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(self.channels, kernel_size=3, padding='same'))
model.add(Activation("tanh"))
gen_input = Input(shape=(self.latent_dim,))
img = model(gen_input)
model.summary()
return Model(gen_input, img)
def build_disk_and_q_net(self):
img = Input(shape=self.img_shape)
# Shared layers between discriminator and recognition network
model = Sequential()
model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
#model.add(ZeroPadding2D(padding=((0,1),(0,1))))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(256, kernel_size=3, strides=2, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(512, kernel_size=3, strides=2, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Flatten())
model.summary()
img_embedding = model(img)
# Discriminator
validity = Dense(1, activation='sigmoid')(img_embedding)
# Recognition
q_net = Dense(128, activation='relu')(img_embedding)
label = Dense(self.num_classes, activation='softmax')(q_net)
# Return discriminator and recognition network
return Model(img, validity), Model(img, label)
And the summaries:
Model: "sequential_14"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_53 (Conv2D) (None, 112, 112, 64) 640
_________________________________________________________________
leaky_re_lu_28 (LeakyReLU) (None, 112, 112, 64) 0
_________________________________________________________________
dropout_28 (Dropout) (None, 112, 112, 64) 0
_________________________________________________________________
conv2d_54 (Conv2D) (None, 56, 56, 128) 73856
_________________________________________________________________
leaky_re_lu_29 (LeakyReLU) (None, 56, 56, 128) 0
_________________________________________________________________
dropout_29 (Dropout) (None, 56, 56, 128) 0
_________________________________________________________________
batch_normalization_46 (Batc (None, 56, 56, 128) 512
_________________________________________________________________
conv2d_55 (Conv2D) (None, 28, 28, 256) 295168
_________________________________________________________________
leaky_re_lu_30 (LeakyReLU) (None, 28, 28, 256) 0
_________________________________________________________________
dropout_30 (Dropout) (None, 28, 28, 256) 0
_________________________________________________________________
batch_normalization_47 (Batc (None, 28, 28, 256) 1024
_________________________________________________________________
conv2d_56 (Conv2D) (None, 14, 14, 512) 1180160
_________________________________________________________________
leaky_re_lu_31 (LeakyReLU) (None, 14, 14, 512) 0
_________________________________________________________________
dropout_31 (Dropout) (None, 14, 14, 512) 0
_________________________________________________________________
batch_normalization_48 (Batc (None, 14, 14, 512) 2048
_________________________________________________________________
flatten_7 (Flatten) (None, 100352) 0
=================================================================
Total params: 1,553,408
Trainable params: 1,551,616
Non-trainable params: 1,792
_________________________________________________________________
Model: "sequential_15"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_31 (Dense) (None, 100352) 7325696
_________________________________________________________________
reshape_7 (Reshape) (None, 14, 14, 512) 0
_________________________________________________________________
batch_normalization_49 (Batc (None, 14, 14, 512) 2048
_________________________________________________________________
up_sampling2d_18 (UpSampling (None, 28, 28, 512) 0
_________________________________________________________________
conv2d_57 (Conv2D) (None, 28, 28, 256) 1179904
_________________________________________________________________
activation_25 (Activation) (None, 28, 28, 256) 0
_________________________________________________________________
batch_normalization_50 (Batc (None, 28, 28, 256) 1024
_________________________________________________________________
up_sampling2d_19 (UpSampling (None, 56, 56, 256) 0
_________________________________________________________________
conv2d_58 (Conv2D) (None, 56, 56, 128) 295040
_________________________________________________________________
activation_26 (Activation) (None, 56, 56, 128) 0
_________________________________________________________________
batch_normalization_51 (Batc (None, 56, 56, 128) 512
_________________________________________________________________
up_sampling2d_20 (UpSampling (None, 112, 112, 128) 0
_________________________________________________________________
conv2d_59 (Conv2D) (None, 112, 112, 64) 73792
_________________________________________________________________
activation_27 (Activation) (None, 112, 112, 64) 0
_________________________________________________________________
batch_normalization_52 (Batc (None, 112, 112, 64) 256
_________________________________________________________________
up_sampling2d_21 (UpSampling (None, 224, 224, 64) 0
_________________________________________________________________
conv2d_60 (Conv2D) (None, 224, 224, 1) 577
_________________________________________________________________
activation_28 (Activation) (None, 224, 224, 1) 0
=================================================================
Total params: 8,878,849
Trainable params: 8,876,929
Non-trainable params: 1,920
_________________________________________________________________
EDIT:
Because you decreased the number of classes from 10 to 3, therefore you have to change the latent_dim parameter to 65. Notice that the method sample_generator_input generates noise of size 62 and labels of size number of classes, which then concatenates (size becomes 62 + 3 = 65).
The generator is defined to accept input_dim of self.latent_dim, it would be appropriate to calculate the latent_dim in the constructor based on the number of classes instead: self.latent_dim = 62 + self.num_classes.
Moreover, in method sample_images, there are hardcoded magical numbers.
How can one know what it means? I mean this: r, c = 10, 10.
I assume that it means number of classes. Since you changed it from 10 to 3 in your example, I suggest you change the line to:
r, c = self.num_classes, self.num_classes
Overall, the code is badly written and if you change a constant then it all breaks. Be careful when copying full pieces of code. Make sure you understand each and every part of it before copying.
Here's the full code:
from __future__ import print_function, division
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply, concatenate
from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D, Lambda
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras.utils import to_categorical
import keras.backend as K
import matplotlib.pyplot as plt
import numpy as np
class INFOGAN():
def __init__(self):
self.img_rows = 224
self.img_cols = 224
self.channels = 1
self.num_classes = 3
self.img_shape = (self.img_rows, self.img_cols, self.channels)
self.latent_dim = 62 + self.num_classes
optimizer = Adam(0.0002, 0.5)
losses = ['binary_crossentropy', self.mutual_info_loss]
# Build and the discriminator and recognition network
self.discriminator, self.auxilliary = self.build_disk_and_q_net()
self.discriminator.compile(loss=['binary_crossentropy'],
optimizer=optimizer,
metrics=['accuracy'])
# Build and compile the recognition network Q
self.auxilliary.compile(loss=[self.mutual_info_loss],
optimizer=optimizer,
metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# The generator takes noise and the target label as input
# and generates the corresponding digit of that label
gen_input = Input(shape=(self.latent_dim,))
img = self.generator(gen_input)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The discriminator takes generated image as input and determines validity
valid = self.discriminator(img)
# The recognition network produces the label
target_label = self.auxilliary(img)
# The combined model (stacked generator and discriminator)
self.combined = Model(gen_input, [valid, target_label])
self.combined.compile(loss=losses,
optimizer=optimizer)
def build_generator(self):
model = Sequential()
model.add(Dense(512 * 14 * 14, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((14, 14, 512)))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(256, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(self.channels, kernel_size=3, padding='same'))
model.add(Activation("tanh"))
gen_input = Input(shape=(self.latent_dim,))
img = model(gen_input)
model.summary()
return Model(gen_input, img)
def build_disk_and_q_net(self):
img = Input(shape=self.img_shape)
# Shared layers between discriminator and recognition network
model = Sequential()
model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
#model.add(ZeroPadding2D(padding=((0,1),(0,1))))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(256, kernel_size=3, strides=2, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(512, kernel_size=3, strides=2, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Flatten())
model.summary()
img_embedding = model(img)
# Discriminator
validity = Dense(1, activation='sigmoid')(img_embedding)
# Recognition
q_net = Dense(128, activation='relu')(img_embedding)
label = Dense(self.num_classes, activation='softmax')(q_net)
print(label.shape)
# Return discriminator and recognition network
return Model(img, validity), Model(img, label)
def mutual_info_loss(self, c, c_given_x):
"""The mutual information metric we aim to minimize"""
eps = 1e-8
conditional_entropy = K.mean(- K.sum(K.log(c_given_x + eps) * c, axis=1))
entropy = K.mean(- K.sum(K.log(c + eps) * c, axis=1))
return conditional_entropy + entropy
def sample_generator_input(self, batch_size):
# Generator inputs
sampled_noise = np.random.normal(0, 1, (batch_size, 62))
sampled_labels = np.random.randint(0, self.num_classes, batch_size).reshape(-1, 1)
print(sampled_labels)
sampled_labels = to_categorical(sampled_labels, num_classes=self.num_classes)
return sampled_noise, sampled_labels
def train(self, epochs, batch_size=128, sample_interval=50):
X_train = np.ones([batch_size, 224, 224])
y_train = np.zeros([batch_size,])
# Rescale -1 to 1
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
X_train = np.expand_dims(X_train, axis=3)
y_train = y_train.reshape(-1, 1)
# Adversarial ground truths
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random half batch of images
idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs = X_train[idx]
# Sample noise and categorical labels
sampled_noise, sampled_labels = self.sample_generator_input(batch_size)
gen_input = np.concatenate((sampled_noise, sampled_labels), axis=1)
print(sampled_labels.shape, batch_size)
# Generate a half batch of new images
gen_imgs = self.generator.predict(gen_input)
# Train on real and generated data
d_loss_real = self.discriminator.train_on_batch(imgs, valid)
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
# Avg. loss
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator and Q-network
# ---------------------
g_loss = self.combined.train_on_batch(gen_input, [valid, sampled_labels])
# Plot the progress
print ("%d [D loss: %.2f, acc.: %.2f%%] [Q loss: %.2f] [G loss: %.2f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss[1], g_loss[2]))
# If at save interval => save generated image samples
if epoch % sample_interval == 0:
self.sample_images(epoch)
def sample_images(self, epoch):
r, c = self.num_classes, self.num_classes
fig, axs = plt.subplots(r, c)
for i in range(c):
sampled_noise, _ = self.sample_generator_input(c)
label = to_categorical(np.full(fill_value=i, shape=(r,1)), num_classes=self.num_classes)
gen_input = np.concatenate((sampled_noise, label), axis=1)
gen_imgs = self.generator.predict(gen_input)
gen_imgs = 0.5 * gen_imgs + 0.5
for j in range(r):
axs[j,i].imshow(gen_imgs[j,:,:,0], cmap='gray')
axs[j,i].axis('off')
fig.savefig("images/%d.png" % epoch)
plt.close()
def save_model(self):
def save(model, model_name):
model_path = "saved_model/%s.json" % model_name
weights_path = "saved_model/%s_weights.hdf5" % model_name
options = {"file_arch": model_path,
"file_weight": weights_path}
json_string = model.to_json()
open(options['file_arch'], 'w').write(json_string)
model.save_weights(options['file_weight'])
save(self.generator, "generator")
save(self.discriminator, "discriminator")
if __name__ == '__main__':
infogan = INFOGAN()
infogan.train(epochs=50000, batch_size=8, sample_interval=50)

What is the correct way to upsample a [32x32x6] layer in a CNN

I have a CNN that produces a [32x32] image with 6 channels, but I need to upsample it to 256x256. I'm doing:
def upsample(filters, size):
initializer = tf.random_normal_initializer(0., 0.02)
result = tf.keras.Sequential()
result.add(tf.keras.layers.Conv2DTranspose(filters, size, strides=2,
padding='same',
kernel_initializer=initializer,
use_bias=False))
return result
Then I pass the layer like this:
up_stack = [
upsample(6, 3), # x2
upsample(6, 3), # x2
upsample(6, 3) # x2
]
for up in up_stack:
finalLayer = up(finalLayer)
But this setup produces inaccurate results. Is there anything I'm doing wrong?
Your other option would be to use tf.keras.layers.UpSampling2D for your purpose, but that doesn't learn a kernel to upsample (it uses bilinear upsampling).
So, your approach is correct. But, you have used kernel_size as 3x3.
It should be 2x2 and if you are not satisfied with the results, you should increase the number of filters from [32, 256].
If you wish to use the up-convolution, I will suggest doing the following to achieve what you want. Following code works, just change the filter based on your need.
import tensorflow as tf
from tensorflow.keras import layers
# in = 32x32 out 256x256
inputs = layers.Input(shape=(32, 32, 6))
deconc01 = layers.Conv2DTranspose(256, kernel_size=2, strides=(2, 2), activation='relu')(inputs)
deconc02 = layers.Conv2DTranspose(256, kernel_size=2, strides=(2, 2), activation='relu')(deconc01)
outputs = layers.Conv2DTranspose(256, kernel_size=2, strides=(2, 2), activation='relu')(deconc02)
model = tf.keras.Model(inputs=inputs, outputs=outputs, name="up-conv")
Model: "up-conv"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 32, 32, 6)] 0
_________________________________________________________________
conv2d_transpose (Conv2DTran (None, 64, 64, 256) 6400
_________________________________________________________________
conv2d_transpose_1 (Conv2DTr (None, 128, 128, 256) 262400
_________________________________________________________________
conv2d_transpose_2 (Conv2DTr (None, 256, 256, 256) 262400
=================================================================
Total params: 531,200
Trainable params: 531,200
Non-trainable params: 0
_________________________________________________________________