in C sharp, if we have 2 interfaces, with the same signature method, we can implement them in one class, in the following way:
interface A
{
void doStuff();
}
interface B
{
void doStuff();
}
class Test : A, B
{
void A.doStuff()
{
Console.WriteLine("A");
}
void B.doStuff()
{
Console.WriteLine("A");
}
}
If we thranslate this to Kotlin we have
interface A
{
fun doStuff()
}
interface B
{
fun doStuff()
}
class Test : A, B
{
override fun doStuff() {
println("Same for A b")
}
}
fun main(args: Array<String>)
{
var test = Test();
test.doStuff() //will print Same for A b"
var InterfaceA:A = test
var InterfaceB:B = test
InterfaceA.doStuff()//will print Same for A b"
InterfaceB.doStuff()//will print Same for A b"
}
So, my question is, how can I
give to each interface a different implementation as in C sharp example?.
**Note: I have read the docs on https://kotlinlang.org/docs/reference/interfaces.html , there is a similar example,
interface A {
fun foo() { print("A") }
}
interface B {
fun foo() { print("B") }
}
class D : A, B {
override fun foo() {
super<A>.foo()
super<B>.foo()
}
}
Here, foo is implemented in each interface, so when implemented in D, it just call the implementation defined in the interface. But how can we give define different implementation in D?.
It is not possible in Kotlin. Kotlin is similar to Java in this respect. Methods that are override-equivalent in interfaces must have the same implementation in a class. The rationale behind that behavior is that casting a object reference to different types should not change behavior of its methods, e.g:
val test = Test()
(test as A).doStuff()
(test as B).doStuff() // should do the same as above
Related
Is it impossible to use generic on interface level as argument type for function?
I read about out and in keywords but as I understand they don't work for this case.
interface BaseB
open class ChildB1: BaseB
open class ChildB2: BaseB
abstract class BaseMapper<V: BaseB> {
open fun test(v: V) {
return
}
}
class TestMapper1: BaseMapper<ChildB1>() {
override fun test(v: ChildB1) {
return
}
}
class TestMapper2: BaseMapper<ChildB2>() {
override fun test(v: ChildB2) {
return
}
}
#Test
fun t() {
//ERROR
val mappers: List<BaseMapper<BaseB>> = listOf(TestMapper1(), TestMapper2())
mappers[0].test(ChildB1())
}
A BaseMapper<ChildB1> is not logically a BaseMapper<BaseB>. It consumes ChildB’s, so if you passed some other implementation of Base it would cause a ClassCastException if the compiler let you do that. There is no common subtype of your two subclasses besides Nothing, so the only way to put both of these types in the same list is to make it a List<BaseMapper<in Nothing>>.
Example of why it is not logically a BaseMapper<BaseB>:
open class ChildB1: BaseB {
fun sayHello() = println("Hello world")
}
class TestMapper1: BaseMapper<ChildB1>() {
override fun test(v: ChildB1) {
v.sayHello() // if v is not a ChildB1, this would be impossible
}
}
//...
val impossibleCast: BaseMapper<BaseB> = TestMapper1()
// TestMapper1 cannot call sayHello() because it's undefined for ChildB2.
// This is impossible:
impossibleCast.test(ChildB2())
// ...so the compiler prevents you from doing the impossible cast in the first place.
Let's say we have an abstract class A with feature A, we also need an abstract class B with feature B that extends A. Later on, we make an abstract class C with feature C that extends A.
Is it possible somehow to have an abstract class that has features B and C, without reimplementing (rewriting code) one of them?
abstract class A { fun featureA() { /* implementation */ } }
abstract class B: A() { fun featureB() { /* implementation */ } }
abstract class C: A() { fun featureC() { /* implementation */ } }
abstract class D: C() { fun featureB() { /* how can the implementation be avoided? */ } }
I don't mind if there aren't abstract classes per se, but it's required to have the implementation of corresponding feature.
Can you use interfaces? Since you're really trying to compose a class from types B and C, that's a better fit than trying to inherit from both. You can inherit from other interfaces and use their implementations:
interface A {
fun beA() { print("A!") }
}
interface B : A {
fun beB() { print("B!") }
}
interface C : A {
fun beC() { print("C!") }
}
class D : B, C {
fun beD() { print("D!") }
}
fun main() {
with(D()) {
beB()
beC()
beD()
beA()
}
}
>> B!C!D!A!
Interfaces can have properties, but not with backing fields, so they have to be abstract - you can't assign a default value in the interface. So that's a limitation you might run into vs actual abstract classes. But you can create properties with getter functions:
interface A {
val luckyNumber = 777 // nope
val luckyNumber get() = 777 // yep
}
When I have two classes (A and B) and A has a function called myFunA which then calls myFunB (inside of class B), is it possible for code in myFunB to obtain a reference to the class A that is used to call myFunB? I can always pass the reference as a parameter but I am wondering if Kotlin has a way of allowing a function to determine the instance of the parent caller.
class A {
fun myFunA() {
val b = B()
b.myFunB() {
}
}
}
class B {
fun myFunB() {
// Is it possible to obtain a reference to the instance of class A that is calling
// this function?
}
}
You can do it like this:
interface BCaller {
fun B.myFunB() = myFunB(this#BCaller)
}
class A : BCaller {
fun myFunA() {
val b = B()
b.myFunB()
}
}
class B {
fun myFunB(bCaller: BCaller) {
// you can use `bCaller` here
}
}
If you need a reflection-based approach, read this.
I have a class that receives a function allowing it to display things on the UI during a failure case. What's the best way that I can verify that the function is called in my test?
MyClass(private val uiPrinter: (String) -> Unit) {
fun foo() {
// do some stuff
uiPrinter("printing from foo!")
// do some more stuff
}
}
MyClassTest() {
val testUiPrinter: (String) -> Unit = { System.out.println(it) }
#Test
fun uiPrinterIsInvoked() {
val myClass = MyClass(testUiPrinter)
myClass.foo()
// can I verify that testUiPrinter has been invoked?
}
}
You may want to check out the Model-View-Presenter architecture. Its purpose is to hide the Android framework behind an abstract View interface which a purely Java Presenter can interact with. In your example:
interface ViewInterface {
fun printError(error: String)
}
class MyPresenter(private val view: ViewInterface) {
fun foo() {
// do some stuff (testable stuff)
view.printError("Printing from foo()!")
// do some more (testable) stuff
}
}
class MyPresenterTest() { // Test using Mockito to mock the abstract view
private val view = mock(ViewInterface::class.java)
private val presenter = MyPresenter(view)
#Test
fun printsError() {
// set up preconditions
presenter.foo()
verify(view).printError("Printing from foo()!")
}
}
Your concrete view will generally be an Android Activity, Fragment, or View which implements the view interface. Notice MyPresenter only expects the abstract view and does not need knowledge of the framework-dependent operations.
class MyActivity : Activity(), ViewInterface {
// ...
override fun printError(error: String) {
textView.text = error // For example
}
// ...
}
This can be achieved by mocking the higher-order function as higher-order functions are objects unless inlined.
#Mock
val testUiPrinter: (String) -> Unit
#Test
fun uiPrinterIsInvoked() {
val myClass = MyClass(testUiPrinter)
myClass.foo()
verify(testUiPrinter).invoke("Printing from foo!")
}
I'm really confused about the kotlin delegation. Let me describe the regular polymorphism approach here which looks same like the kotlin delgation.
interface Base {
fun print()
}
class BaseImpl(val x: Int) : Base {
override fun print() { print(x) }
}
fun main(args: Array<String>) {
val b : Base = BaseImpl(10)
b.print() // prints 10
}
I can pass any implemented class of Base interface to b variable to call the method of specified class's object. Then what is the benefit of kotlin's delegation? Which is described here.
interface Base {
fun print()
}
class BaseImpl(val x: Int) : Base {
override fun print() { print(x) }
}
class Derived(b: Base) : Base by b // why extra line of code?
// if the above example works fine without it.
fun main(args: Array<String>) {
val b = BaseImpl(10)
Derived(b).print() // prints 10
}
I know this is the simple scenario where the both codes are working fine. There should be a benefit of delegation that's why kotlin introduced it. What is the difference? and how kotlin delegation can be useful? Please give me a working example to compare with polymorphism approach.
Also remember that you're not restricted to just one delegate. Kotlin's way of implementing delegation is similar to traits implementation in languages like Groovy. You can compose different functionality via delegates. Kotlin's way can also be considered more powerful because you can "plug in" different implementations too.
interface Marks {
fun printMarks()
}
class StdMarks() : Marks {
override fun printMarks() { println("printed marks") }
}
class CsvMarks() : Marks {
override fun printMarks() { println("printed csv marks") }
}
interface Totals {
fun printTotals()
}
class StdTotals : Totals {
override fun printTotals() { println("calculated and printed totals") }
}
class CheatTotals : Totals {
override fun printTotals() { println("calculated and printed higher totals") }
}
class Student(val studentId: Int, marks: Marks, totals: Totals)
: Marks by marks, Totals by totals
fun main(args:Array<String>) {
val student = Student(1,StdMarks(), StdTotals())
student.printMarks()
student.printTotals()
val cheater = Student(1,CsvMarks(), CheatTotals())
cheater.printMarks()
cheater.printTotals()
}
Output:
printed marks
calculated and printed totals
printed csv marks
calculated and printed higher totals
You can't do this with inheritance.
It is extremely useful for creating decorators and for object composition.
Joshua Bloch in Effective Java, 2nd Edition, Item 16 'Favor Composition Over Inheritance' shows a good example: inheritance is easy-to-break, and decorators are not.
Inheritance:
class LoggingList<E> : ArrayList<E>() {
override fun add(e: E): Boolean {
println("added $e")
return super.add(e)
}
override fun addAll(e: Collection<E>): Boolean {
println("added all: $e")
return super.addAll(e) // oops! Calls [add] internally.
}
}
Delegation:
class LoggingList<E>(delegate: MutableList<E>) : MutableList<E> by delegate {
override fun add(e: E): Boolean {
println("added $e")
return delegate.add(e)
}
override fun addAll(e: Collection<E>): Boolean {
println("added all: $e")
return delegate.addAll(e) // all OK
// it calls [delegate]'s [add] internally, not ours
}
}
It is useful because of the Delegation Pattern where most of the behavior can be the same as the target of the delegation (b) but you just want to override a subset of methods to act differently.
An example would be an InputStream implementation which delegates all work to another InputStream but overrides the close() method to not close the underlying stream. This could be implemented as:
class CloseGuardInputStream(private val base: InputStream)
: InputStream by base {
override fun close() {}
}
Following is the example :-
interface Mode{
val color:String
fun display()
}
class DarkMode(override val color:String) : Mode{
override fun display(){
println("Dark Mode..."+color)
}
}
class LightMode(override val color:String) : Mode {
override fun display() {
println("Light Mode..."+color)
}
}
class MyCustomMode(val mode: Mode): Mode{
override val color:String = mode.color
override fun display() {
mode.display()
}
}
Now, the custom mode can reuse display() function of both modes DarkMode & LightMode
fun main() {
MyCustomMode(DarkMode("CUSTOM_DARK_GRAY")).display()
MyCustomMode(LightMode("CUSTOM_LIGHT_GRAY")).display()
}
/* output:
Dark Mode...CUSTOM_DARK_GRAY
Light Mode...CUSTOM_LIGHT_GRAY
*/
Kotlin natively support delegation pattern.
Kotlin provides by keyword to specify the delegate object which our custom mode will be delegating to.
We can achieve the same result of the code above using by keyword.
class MyCustomMode(val mode: Mode): Mode by mode
fun main() {
MyCustomMode(DarkMode("CUSTOM_DARK_GRAY")).display()
MyCustomMode(LightMode("CUSTOM_LIGHT_GRAY")).display()
}
/* output:
Dark Mode...CUSTOM_DARK_GRAY
Light Mode...CUSTOM_LIGHT_GRAY
*/