Matplotlib: scatter plot with colormaps for edgecolor but no facecolor - matplotlib

I want to have a scatter plot with colormap for edgecolors but no facecolors.
When I use facecolor='None', it does not work.
import numpy as np
import matplotlib.pyplot as plt
N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)
area = np.pi * (15 * np.random.rand(N))**2 # 0 to 15 point radii
plt.scatter(x, y, s=area,c=colors,facecolors='None',cmap="gist_rainbow", alpha=0.5)
plt.show()
Any solution?

The c argument will affect facecolor and edgecolor simultaneouly, the arguments facecolor and edgecolor are hence ignored.
A solution would be not to use the c argument together with a colormap, but instead use facecolors and edgecolors alone. In this case facecolors can be set to "None" and edgecolors can be given a list of colors to use.
To create this list, the same colormap can be applied.
c = plt.cm.gist_rainbow(colors)
plt.scatter(x, y, s=area,facecolors="None", edgecolors=c, lw=1,alpha=0.5)
A complete example:
import numpy as np
import matplotlib.pyplot as plt
N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)
area = np.pi * (15 * np.random.rand(N))**2 # 0 to 15 point radii
c = plt.cm.gist_rainbow(colors)
plt.scatter(x, y, s=area,facecolors="None", edgecolors=c, lw=2,alpha=0.5)
plt.show()

The problem is that color= overrides the facecolors= argument.
The solution I came up with is to get the PathCollection returned by pyplot.scatter() and then change the facecolor directly. Note that you probably need to increase the line width to see the edges better.
import numpy as np
import matplotlib.pyplot as plt
N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)
area = np.pi * (15 * np.random.rand(N))**2 # 0 to 15 point radii
a = plt.scatter(x, y, s=area,c=colors,facecolor='none',lw=2,cmap="gist_rainbow", alpha=0.5)
a.set_facecolor('none')
plt.show()

I know this has been dead for a while, but I wanted to add my experience as I just encountered this same problem.
I prefer Diziet's method as passing the PathCollection object to a colorbar and having it match the cmap used in the scatter plot works exactly as it would if you didn't alter the facecolors.
With the accepted solution, however, I encountered some odd behavior where even after removing the cmap argument from the ax.scatter call the scatter plot edge colormap and the colorbar colormap didn't match.

Related

Surface Plot of a function B(x,y,z)

I have to plot a surface plot which has axes x,y,z and a colormap set by a function of x,y,z [B(x,y,z)].
I have the coordinate arrays:
x=np.arange(-100,100,1)
y=np.arange(-100,100,1)
z=np.arange(-100,100,1)
Moreover, my to-be-colormap function B(x,y,z) is a 3D array, whose B(x,y,z)[i] elements are the (x,y) coordinates at z.
I have tried something like:
Z,X,Y=np.meshgrid(z,x,y) # Z is the first one since B(x,y,z)[i] are the (x,y) coordinates at z.
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
img = ax.scatter(Z, X, Y, c=B(x,y,z), cmap=plt.hot())
fig.colorbar(img)
plt.show()
However, it unsurprisingly plots dots, which is not what I want. Rather, I need a surface plot.
The figure I have obtained:
The kind of figure I want:
where the colors are determined by B(x,y,z) for my case.
You have to:
use plot_surface to create a surface plot.
your function B(x, y, z) will be used to compute the color parameter, a number assigned to each face of the surface.
the color parameter must be normalized between 0, 1. We use matplotlib's Normalize to achieve that.
then, you create the colors by applying the colormap to the normalized color parameter.
finally, you create the plot.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.colors import Normalize
t = np.linspace(0, 2*np.pi)
p = np.linspace(0, 2*np.pi)
t, p = np.meshgrid(t, p)
r1, r2 = 1, 3
x = (r2 + r1 * np.cos(t)) * np.cos(p)
y = (r2 + r1 * np.cos(t)) * np.sin(p)
z = r1 * np.sin(t)
color_param = np.sin(x / 2) * np.cos(y) + z
cmap = cm.jet
norm = Normalize(vmin=color_param.min(), vmax=color_param.max())
norm_color_param = norm(color_param)
colors = cmap(norm_color_param)
fig = plt.figure()
ax = fig.add_subplot(projection="3d")
ax.plot_surface(x, y, z, facecolors=colors)
ax.set_zlim(-4, 4)
plt.show()

How to have only 1 shared colorbar for multiple plots [duplicate]

I've spent entirely too long researching how to get two subplots to share the same y-axis with a single colorbar shared between the two in Matplotlib.
What was happening was that when I called the colorbar() function in either subplot1 or subplot2, it would autoscale the plot such that the colorbar plus the plot would fit inside the 'subplot' bounding box, causing the two side-by-side plots to be two very different sizes.
To get around this, I tried to create a third subplot which I then hacked to render no plot with just a colorbar present.
The only problem is, now the heights and widths of the two plots are uneven, and I can't figure out how to make it look okay.
Here is my code:
from __future__ import division
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import patches
from matplotlib.ticker import NullFormatter
# SIS Functions
TE = 1 # Einstein radius
g1 = lambda x,y: (TE/2) * (y**2-x**2)/((x**2+y**2)**(3/2))
g2 = lambda x,y: -1*TE*x*y / ((x**2+y**2)**(3/2))
kappa = lambda x,y: TE / (2*np.sqrt(x**2+y**2))
coords = np.linspace(-2,2,400)
X,Y = np.meshgrid(coords,coords)
g1out = g1(X,Y)
g2out = g2(X,Y)
kappaout = kappa(X,Y)
for i in range(len(coords)):
for j in range(len(coords)):
if np.sqrt(coords[i]**2+coords[j]**2) <= TE:
g1out[i][j]=0
g2out[i][j]=0
fig = plt.figure()
fig.subplots_adjust(wspace=0,hspace=0)
# subplot number 1
ax1 = fig.add_subplot(1,2,1,aspect='equal',xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{1}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
plt.ylabel(r"y ($\theta_{E}$)",rotation='horizontal',fontsize="15")
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.imshow(g1out,extent=(-2,2,-2,2))
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
e1 = patches.Ellipse((0,0),2,2,color='white')
ax1.add_patch(e1)
# subplot number 2
ax2 = fig.add_subplot(1,2,2,sharey=ax1,xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{2}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
ax2.yaxis.set_major_formatter( NullFormatter() )
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
plt.imshow(g2out,extent=(-2,2,-2,2))
e2 = patches.Ellipse((0,0),2,2,color='white')
ax2.add_patch(e2)
# subplot for colorbar
ax3 = fig.add_subplot(1,1,1)
ax3.axis('off')
cbar = plt.colorbar(ax=ax2)
plt.show()
Just place the colorbar in its own axis and use subplots_adjust to make room for it.
As a quick example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
fig.colorbar(im, cax=cbar_ax)
plt.show()
Note that the color range will be set by the last image plotted (that gave rise to im) even if the range of values is set by vmin and vmax. If another plot has, for example, a higher max value, points with higher values than the max of im will show in uniform color.
You can simplify Joe Kington's code using the axparameter of figure.colorbar() with a list of axes.
From the documentation:
ax
None | parent axes object(s) from which space for a new colorbar axes will be stolen. If a list of axes is given they will all be resized to make room for the colorbar axes.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
This solution does not require manual tweaking of axes locations or colorbar size, works with multi-row and single-row layouts, and works with tight_layout(). It is adapted from a gallery example, using ImageGrid from matplotlib's AxesGrid Toolbox.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
# Set up figure and image grid
fig = plt.figure(figsize=(9.75, 3))
grid = ImageGrid(fig, 111, # as in plt.subplot(111)
nrows_ncols=(1,3),
axes_pad=0.15,
share_all=True,
cbar_location="right",
cbar_mode="single",
cbar_size="7%",
cbar_pad=0.15,
)
# Add data to image grid
for ax in grid:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
# Colorbar
ax.cax.colorbar(im)
ax.cax.toggle_label(True)
#plt.tight_layout() # Works, but may still require rect paramater to keep colorbar labels visible
plt.show()
Using make_axes is even easier and gives a better result. It also provides possibilities to customise the positioning of the colorbar.
Also note the option of subplots to share x and y axes.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
cax,kw = mpl.colorbar.make_axes([ax for ax in axes.flat])
plt.colorbar(im, cax=cax, **kw)
plt.show()
As a beginner who stumbled across this thread, I'd like to add a python-for-dummies adaptation of abevieiramota's very neat answer (because I'm at the level that I had to look up 'ravel' to work out what their code was doing):
import numpy as np
import matplotlib.pyplot as plt
fig, ((ax1,ax2,ax3),(ax4,ax5,ax6)) = plt.subplots(2,3)
axlist = [ax1,ax2,ax3,ax4,ax5,ax6]
first = ax1.imshow(np.random.random((10,10)), vmin=0, vmax=1)
third = ax3.imshow(np.random.random((12,12)), vmin=0, vmax=1)
fig.colorbar(first, ax=axlist)
plt.show()
Much less pythonic, much easier for noobs like me to see what's actually happening here.
Shared colormap and colorbar
This is for the more complex case where the values are not just between 0 and 1; the cmap needs to be shared instead of just using the last one.
import numpy as np
from matplotlib.colors import Normalize
import matplotlib.pyplot as plt
import matplotlib.cm as cm
fig, axes = plt.subplots(nrows=2, ncols=2)
cmap=cm.get_cmap('viridis')
normalizer=Normalize(0,4)
im=cm.ScalarMappable(norm=normalizer)
for i,ax in enumerate(axes.flat):
ax.imshow(i+np.random.random((10,10)),cmap=cmap,norm=normalizer)
ax.set_title(str(i))
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
As pointed out in other answers, the idea is usually to define an axes for the colorbar to reside in. There are various ways of doing so; one that hasn't been mentionned yet would be to directly specify the colorbar axes at subplot creation with plt.subplots(). The advantage is that the axes position does not need to be manually set and in all cases with automatic aspect the colorbar will be exactly the same height as the subplots. Even in many cases where images are used the result will be satisfying as shown below.
When using plt.subplots(), the use of gridspec_kw argument allows to make the colorbar axes much smaller than the other axes.
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
Example:
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,8), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,8), vmin=0, vmax=1)
ax.set_ylabel("y label")
fig.colorbar(im, cax=cax)
plt.show()
This works well, if the plots' aspect is autoscaled or the images are shrunk due to their aspect in the width direction (as in the above). If, however, the images are wider then high, the result would look as follows, which might be undesired.
A solution to fix the colorbar height to the subplot height would be to use mpl_toolkits.axes_grid1.inset_locator.InsetPosition to set the colorbar axes relative to the image subplot axes.
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
from mpl_toolkits.axes_grid1.inset_locator import InsetPosition
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(7,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,16), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,16), vmin=0, vmax=1)
ax.set_ylabel("y label")
ip = InsetPosition(ax2, [1.05,0,0.05,1])
cax.set_axes_locator(ip)
fig.colorbar(im, cax=cax, ax=[ax,ax2])
plt.show()
New in matplotlib 3.4.0
Shared colorbars can now be implemented using subfigures:
New Figure.subfigures and Figure.add_subfigure allow ... localized figure artists (e.g., colorbars and suptitles) that only pertain to each subfigure.
The matplotlib gallery includes demos on how to plot subfigures.
Here is a minimal example with 2 subfigures, each with a shared colorbar:
fig = plt.figure(constrained_layout=True)
(subfig_l, subfig_r) = fig.subfigures(nrows=1, ncols=2)
axes_l = subfig_l.subplots(nrows=1, ncols=2, sharey=True)
for ax in axes_l:
im = ax.imshow(np.random.random((10, 10)), vmin=0, vmax=1)
# shared colorbar for left subfigure
subfig_l.colorbar(im, ax=axes_l, location='bottom')
axes_r = subfig_r.subplots(nrows=3, ncols=1, sharex=True)
for ax in axes_r:
mesh = ax.pcolormesh(np.random.randn(30, 30), vmin=-2.5, vmax=2.5)
# shared colorbar for right subfigure
subfig_r.colorbar(mesh, ax=axes_r)
The solution of using a list of axes by abevieiramota works very well until you use only one row of images, as pointed out in the comments. Using a reasonable aspect ratio for figsize helps, but is still far from perfect. For example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(9.75, 3))
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
The colorbar function provides the shrink parameter which is a scaling factor for the size of the colorbar axes. It does require some manual trial and error. For example:
fig.colorbar(im, ax=axes.ravel().tolist(), shrink=0.75)
To add to #abevieiramota's excellent answer, you can get the euqivalent of tight_layout with constrained_layout. You will still get large horizontal gaps if you use imshow instead of pcolormesh because of the 1:1 aspect ratio imposed by imshow.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2, constrained_layout=True)
for ax in axes.flat:
im = ax.pcolormesh(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.flat)
plt.show()
I noticed that almost every solution posted involved ax.imshow(im, ...) and did not normalize the colors displayed to the colorbar for the multiple subfigures. The im mappable is taken from the last instance, but what if the values of the multiple im-s are different? (I'm assuming these mappables are treated in the same way that the contour-sets and surface-sets are treated.) I have an example using a 3d surface plot below that creates two colorbars for a 2x2 subplot (one colorbar per one row). Although the question asks explicitly for a different arrangement, I think the example helps clarify some things. I haven't found a way to do this using plt.subplots(...) yet because of the 3D axes unfortunately.
If only I could position the colorbars in a better way... (There is probably a much better way to do this, but at least it should be not too difficult to follow.)
import matplotlib
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
cmap = 'plasma'
ncontours = 5
def get_data(row, col):
""" get X, Y, Z, and plot number of subplot
Z > 0 for top row, Z < 0 for bottom row """
if row == 0:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 1
else:
pnum = 2
elif row == 1:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = -np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 3
else:
pnum = 4
print("\nPNUM: {}, Zmin = {}, Zmax = {}\n".format(pnum, np.min(Z), np.max(Z)))
return X, Y, Z, pnum
fig = plt.figure()
nrows, ncols = 2, 2
zz = []
axes = []
for row in range(nrows):
for col in range(ncols):
X, Y, Z, pnum = get_data(row, col)
ax = fig.add_subplot(nrows, ncols, pnum, projection='3d')
ax.set_title('row = {}, col = {}'.format(row, col))
fhandle = ax.plot_surface(X, Y, Z, cmap=cmap)
zz.append(Z)
axes.append(ax)
## get full range of Z data as flat list for top and bottom rows
zz_top = zz[0].reshape(-1).tolist() + zz[1].reshape(-1).tolist()
zz_btm = zz[2].reshape(-1).tolist() + zz[3].reshape(-1).tolist()
## get top and bottom axes
ax_top = [axes[0], axes[1]]
ax_btm = [axes[2], axes[3]]
## normalize colors to minimum and maximum values of dataset
norm_top = matplotlib.colors.Normalize(vmin=min(zz_top), vmax=max(zz_top))
norm_btm = matplotlib.colors.Normalize(vmin=min(zz_btm), vmax=max(zz_btm))
cmap = cm.get_cmap(cmap, ncontours) # number of colors on colorbar
mtop = cm.ScalarMappable(cmap=cmap, norm=norm_top)
mbtm = cm.ScalarMappable(cmap=cmap, norm=norm_btm)
for m in (mtop, mbtm):
m.set_array([])
# ## create cax to draw colorbar in
# cax_top = fig.add_axes([0.9, 0.55, 0.05, 0.4])
# cax_btm = fig.add_axes([0.9, 0.05, 0.05, 0.4])
cbar_top = fig.colorbar(mtop, ax=ax_top, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_top)
cbar_top.set_ticks(np.linspace(min(zz_top), max(zz_top), ncontours))
cbar_btm = fig.colorbar(mbtm, ax=ax_btm, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_btm)
cbar_btm.set_ticks(np.linspace(min(zz_btm), max(zz_btm), ncontours))
plt.show()
plt.close(fig)
## orientation of colorbar = 'horizontal' if done by column
This topic is well covered but I still would like to propose another approach in a slightly different philosophy.
It is a bit more complex to set-up but it allow (in my opinion) a bit more flexibility. For example, one can play with the respective ratios of each subplots / colorbar:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.gridspec import GridSpec
# Define number of rows and columns you want in your figure
nrow = 2
ncol = 3
# Make a new figure
fig = plt.figure(constrained_layout=True)
# Design your figure properties
widths = [3,4,5,1]
gs = GridSpec(nrow, ncol + 1, figure=fig, width_ratios=widths)
# Fill your figure with desired plots
axes = []
for i in range(nrow):
for j in range(ncol):
axes.append(fig.add_subplot(gs[i, j]))
im = axes[-1].pcolormesh(np.random.random((10,10)))
# Shared colorbar
axes.append(fig.add_subplot(gs[:, ncol]))
fig.colorbar(im, cax=axes[-1])
plt.show()
The answers above are great, but most of them use the fig.colobar() method applied to a fig object. This example shows how to use the plt.colobar() function, applied directly to pyplot:
def shared_colorbar_example():
fig, axs = plt.subplots(nrows=3, ncols=3)
for ax in axs.flat:
plt.sca(ax)
color = np.random.random((10))
plt.scatter(range(10), range(10), c=color, cmap='viridis', vmin=0, vmax=1)
plt.colorbar(ax=axs.ravel().tolist(), shrink=0.6)
plt.show()
shared_colorbar_example()
Since most answers above demonstrated usage on 2D matrices, I went with a simple scatter plot. The shrink keyword is optional and resizes the colorbar.
If vmin and vmax are not specified this approach will automatically analyze all of the subplots for the minimum and maximum value to be used on the colorbar. The above approaches when using fig.colorbar(im) scan only the image passed as argument for min and max values of the colorbar.
Result:

Errorbar variable marker size

I want to plot some data x and y in which I need the marker size to depend on a third array z. I could plot them separately (i.e., scatter x and y with size = z, and errorbar without marker, fmc = 'none') and this solves it. The problem is that I need the legend to show the errorbar AND the dot, together:
and not
Code is here with some made-up data:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(1,10,100)
y = 2*x
yerr = np.random(0.5,1.0,100)
z = np.random(1,10,100)
fig, ax = plt.subplots()
plt.scatter(x, y, s=z, facecolors='', edgecolors='red', label='Scatter')
ax.errorbar(x, y, yerr=yerr, xerr=0, fmt='none', mfc='o', color='red', capthick=1, label='Error bar')
plt.legend()
plt.show()
which produces the legend I want to avoid:
In errorbar the argumentmarkersizedoes not accept arrays asscatter` does.
The idea is usually to use a proxy to put into the legend. So while the errorbar in the plot may have no marker, the one in the legend has a marker set.
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(1,10,11)
y = 2*x
yerr = np.random.rand(11)*5
z = np.random.rand(11)*2+5
fig, ax = plt.subplots()
sc = ax.scatter(x, y, s=z**2, facecolors='', edgecolors='red')
errb = ax.errorbar(x, y, yerr=yerr, xerr=0, fmt='none',
color='red', capthick=1, label="errorbar")
proxy = ax.errorbar([], [], yerr=[], xerr=[], marker='o', mfc="none", mec="red",
color='red', capthick=1, label="errorbar")
ax.legend(handles=[proxy], labels=["errorbar"])
plt.show()

Matplotlib set x tick labels does not swap order

I want to make a line graph where essentially (Dog,1), (Cat,2), (Bird,3) and so on are plotted and connected by line. In additional, I would like to be able to determine the order of the label in the X axis. Matplotlib auto-plotted with the order 'Dog', 'Cat', and 'Bird' label. Despite my attempt at re-arranging the order to 'Dog','Bird','Giraffe','Cat', the graph doesn't change (see image). What should I do to be able to arrange the graph accordingly?
x = ['Dog','Cat','Bird','Dog','Cat','Bird','Dog','Cat','Cat','Cat']
y = [1,2,3,4,5,6,7,8,9,10]
x_ticks_labels = ['Dog','Bird','Giraffe','Cat']
fig, ax = plt.subplots(1,1)
ax.plot(x,y)
# Set number of ticks for x-axis
ax.set_xticks(range(len(x_ticks_labels)))
# Set ticks labels for x-axis
ax.set_xticklabels(x_ticks_labels)
Use matplotlib's categorical feature
You may predetermine the order of categories on the axes by first plotting something in the correct order then removing it again.
import numpy as np
import matplotlib.pyplot as plt
x = ['Dog','Cat','Bird','Dog','Cat','Bird','Dog','Cat','Cat','Cat']
y = [1,2,3,4,5,6,7,8,9,10]
x_ticks_labels = ['Dog','Bird','Giraffe','Cat']
fig, ax = plt.subplots(1,1)
sentinel, = ax.plot(x_ticks_labels, np.linspace(min(y), max(y), len(x_ticks_labels)))
sentinel.remove()
ax.plot(x,y, color="C0", marker="o")
plt.show()
Determine indices of values
The other option is to determine the indices that the values from x would take inside of x_tick_labels. There is unfortunately no canonical way to do so; here I take the
solution from this answer using np.where. Then one can simply plot the y values against those indices and set the ticks and ticklabels accordingly.
import numpy as np
import matplotlib.pyplot as plt
x = ['Dog','Cat','Bird','Dog','Cat','Bird','Dog','Cat','Cat','Cat']
y = [1,2,3,4,5,6,7,8,9,10]
x_ticks_labels = ['Dog','Bird','Giraffe','Cat']
xarr = np.array(x)
ind = np.where(xarr.reshape(xarr.size, 1) == np.array(x_ticks_labels))[1]
fig, ax = plt.subplots(1,1)
ax.plot(ind,y, color="C0", marker="o")
ax.set_xticks(range(len(x_ticks_labels)))
ax.set_xticklabels(x_ticks_labels)
plt.show()
Result in both cases

How to set set the marker size of a 3D scatter plot fixed to the axis?

I've asked a similar question before (How to set a fixed/static size of circle marker on a scatter plot?), but now I wanna do it in 3D. How can I do that?
thanks
As in the 2D case, you need to draw the spheres yourself. If you want nicely shaped spheres this means to draw many patches and thus gets slow quite quickly.
Here's a basic way of doing it:
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
def plot_shere(ax, x, y, z, r, resolution=100, **kwargs):
""" simple function to plot a sphere to a 3d axes """
u = np.linspace(0, 2 * np.pi, resolution)
v = np.linspace(0, np.pi, resolution)
xx = r * np.outer(np.cos(u), np.sin(v)) + x
yy = r * np.outer(np.sin(u), np.sin(v)) + y
zz = r * np.outer(np.ones(np.size(u)), np.cos(v)) + z
ax.plot_surface(xx, yy, zz, rstride=4, cstride=4, **kwargs)
# create some random data (set seed to make it reproducable)
np.random.seed(0)
(x,y,z) = np.random.randint(0,10,(3,5))
r = np.random.randint(2,4,(5,))
# set up the figure
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# loop through the data and plot the spheres
for p in zip(x,y,z,r):
plot_shere(ax, *p, edgecolor='none', color=np.random.rand(3))
# set the axes limits and show the plot
ax.set_ylim([-4,14])
ax.set_xlim([-4,14])
ax.set_zlim([-4,14])
plt.show()
Result: