How to declare an abstract function in Inox - leon

I'm proving certain properties on elliptic curves and for that I rely on some functions that deal with field operations. However, I don't want Inox to reason about the implementation of these functions but to just assume certain properties on them.
Say for instance I'm proving that the addition of points p1 = (x1,y1) and p2 = (x2,y2) is commutative. For implementing the addition of points I need a function that implements addition over its components (i.e. the elements of a field).
The addition will have the following shape:
val addFunction = mkFunDef(addID)() { case Seq() =>
val args: Seq[ValDef] = Seq("f1" :: F, "f2" :: F)
val retType: Type = F
val body: Seq[Variable] => Expr = { case Seq(f1,f2) =>
//do the addition for this field
}
(args, retType, body)
}
For this function I can state properties such as:
val addAssociative: Expr = forall("x" :: F, "y" :: F, "z" :: F){ case (x, y, z) =>
(x ^+ (y ^+ z)) === ((x ^+ y) ^+ z)
}
where ^+ is just the infix operator corresponding to add as presented in this other question.
What is a proper expression to insert in the body so that Inox does not assume anything on it while unrolling?

There are two ways you can go about this:
Use a choose statement in the body of addFunction:
val body: Seq[Variable] => Expr = {
choose("r" :: F)(_ => E(true))
}
During unrolling, Inox will simply replace the choose with a fresh
variables and assume the specified predicate (in this case true) on
this variable.
Use a first-class function. Instead of using add as a named function,
use a function-typed variables:
val add: Expr = Variable(FreshIdentifier("add"), (F, F) =>: F)
You can then specify your associativity property on add and prove the
relevant theorems.
In your case, it's probably better to go with the second option. The issue with proving things about an addFunction with a choose body is that you can't substitute add with some other function in the theorems you've shown about it. However, since the second option only shows things about a free variable, you can then instantiate your theorems with concrete function implementations.
Your theorem would then look something like:
val thm = forallI("add" :: ((F,F) =>: F)) { add =>
implI(isAssociative(add)) { isAssoc => someProperty }
}
and you can instantiate it through
val isAssocAdd: Theorem = ... /* prove associativity of concreteAdd */
val somePropertyForAdd = implE(
forallE(thm)(\("x" :: F, "y" :: F)((x,y) => E(concreteAdd)()(x, y))),
isAssocAdd
)

Related

How to make deeply nested function call polymorphic?

So I have a custom programming language, and in it I am doing some math formalization/modeling. In this instance I am doing basically this (a pseudo-javascript representation):
isIntersection([1, 2, 3], [1, 2], [2, 3]) // => true
isIntersection([1, 2, 3], [1, 2, 3], [3, 4, 5]) // => false
function isIntersection(setTest, setA, setB) {
i = 0
while (i < setTest.length) {
let t = setTest[i]
if (includes(setA, t) || includes(setB, t)) {
i++
} else {
return false
}
}
return true
}
function includes(set, element) {
for (x in set) {
if (isEqual(element, x)) {
return true
}
}
return false
}
function isEqual(a, b) {
if (a is Set && b is Set) {
return isSetEqual(a, b)
} else if (a is X... && b is X...) {
return isX...Equal(a, b)
} ... {
...
}
}
function isSetEqual(a, b) {
i = 0
while (i < a.length) {
let x = a[i]
let y = b[i]
if (!isEqual(x, y)) {
return false
}
i++
}
return true
}
The isIntersection is checking isEqual, and isEqual is configured to be able to handle all kinds of cases of equality check, from sets compared to sets, objects to objects, X's to X's, etc..
The question is, how can we make the isEqual somehow ignorant of the implementation details? Right now you have to have one big if/else/switch statement for every possible type of object. If we add a new type, we have to modify this gigantic isEqual method to add support for it. How can we avoid this, and just define them separately and cleanly?
I was thinking initially of making the objects be "instances of classes" so to speak, with class methods. But I like the purity of having everything just be functions and structs (objects without methods). Is there any way to implement this sort of thing without using classes with methods, instead keeping it just functions and objects?
If not, then how would you implement it with classes? Would it just be something like this?
class Set {
isEqual(set) {
i = 0
while (i < this.length) {
let x = this[i]
let y = set[i]
if (!x.isEqual(y)) {
return false
}
i++
}
return true
}
}
This would mean every object would have to have an isEqual defined on it. How does Haskell handle such a system? Basically looking for inspiration on how this can be most cleanly done. I want to ideally avoid having classes with methods.
Note: You can't just delegate to == native implementation (like assuming this is in JavaScript). We are using a custom programming language and are basically trying to define the meaning of == in the first place.
Another approach is to pass around an isEqual function along with everything somehow, though I don't really see how to do this and if it were possible it would be clunky. So not sure what the best approach is.
Haskell leverages its type and type-class system to deal with polymorphic equality.
The relevant code is
class Eq a where
(==) :: a -> a -> Bool
The English translation is: a type a implements the Eq class if, and only if, it defines a function (==) which takes two inputs of type a and outputs a Bool.
Generally, we declare certain "laws" that type-classes should abide by. For example, x == y should be identical to y == x in all cases, and x == x should never be False. There's no way for the compiler to check these laws, so one typically just writes them into the documentation.
Once we have defined the typeclass Eq in the above manner, we have access to the (==) function (which can be called using infix notation - ie, we can either write (==) x y or x == y). The type of this function is
(==) :: forall a . Eq a => a -> a -> Bool
In other words, for every a that implements the typeclass Eq, (==) is of type a -> a -> Bool.
Consider an example type
data Boring = Dull | Uninteresting
The type Boring has two proper values, Dull and Uninteresting. We can define the Eq implementation as follows:
instance Eq Boring where
Dull == Dull = True
Dull == Uninteresting = False
Uninteresting == Uninteresting = True
Uninteresting == Dull = False
Now, we will be able to evaluate whether two elements of type Boring are equal.
ghci> Dull == Dull
True
ghci> Dull == Uninteresting
False
Note that this is very different from Javascript's notion of equality. It's not possible to compare elements of different types using (==). For example,
ghci> Dull == 'w'
<interactive>:146:9: error:
* Couldn't match expected type `Boring' with actual type `Char'
* In the second argument of `(==)', namely 'w'
In the expression: Dull == 'w'
In an equation for `it': it = Dull == 'w'
When we try to compare Dull to the character 'w', we get a type error because Boring and Char are different types.
We can thus define
includes :: Eq a => [a] -> a -> Bool
includes [] _ = False
includes (x:xs) element = element == x || includes xs element
We read this definition as follows:
includes is a function that, for any type a which implements equality testing, takes a list of as and a single a and checks whether the element is in the list.
If the list is empty, then includes list element will evaluate to False.
If the list is not empty, we write the list as x : xs (a list with the first element as x and the remaining elements as xs). Then x:xs includes element iff either x equals element, or xs includes element.
We can also define
instance Eq a => Eq [a] where
[] == [] = True
[] == (_:_) = False
(_:_) == [] = False
(x:xs) == (y:ys) = x == y && xs == ys
The English translation of this code is:
Consider any type a such that a implements the Eq class (in other words, so that (==) is defined for type a). Then [a] also implements the Eq type class - that is, we can use (==) on two values of type [a].
The way that [a] implements the typeclass is as follows:
The empty list equals itself.
An empty list does not equal a non-empty list.
To decide whether two non-empty lists (x:xs) and (y:ys) are equal, check whether their first elements are equal (aka whether x == y). If the first elements are equal, check whether the remaining elements are equal (whether xs == ys) recursively. If both of these are true, the two lists are equal. Otherwise, they're not equal.
Notice that we're actually using two different ==s in the implementation of Eq [a]. The equality x == y is using the Eq a instance, while the equality xs == ys is recursively using the Eq [a] instance.
In practice, defining Eq instances is typically so simple that Haskell lets the compiler do the work. For example, if we had instead written
data Boring = Dull | Uninteresting deriving (Eq)
Haskell would have automatically generated the Eq Boring instance for us. Haskell also lets us derive other type classes like Ord (where the functions (<) and (>) are defined), show (which allows us to turn our data into Strings), and read (which allows us to turn Strings back into our data type).
Keep in mind that this approach relies heavily on static types and type-checking. Haskell makes sure that we only ever use the (==) function when comparing elements of the same type. The compiler also always knows at compile type which definition of (==) to use in any given situation because it knows the types of the values being compared, so there is no need to do any sort of dynamic dispatch (although there are situations where the compiler will choose to do dynamic dispatch).
If your language uses dynamic typing, this method will not work and you'll be forced to use dynamic dispatch of some variety if you want to be able to define new types. If you use static typing, you should definitely look into Haskell's type class system.

SML converting a string to an int with error catching

So what I want to do is to convert a string into an int and do some error catching on it. I would also like to know where I would put what I want it to do after it fails if it does.
I know how to convert, but I am not sure how to catch it and where the code will jump to after the error
I believe the method for converting it Int.fromString(x)
Thank you.
SML has two approaches to error handling. One, based on raise to raise errors and handle to catch the error, is somewhat similar to how error handling works in languages like Python or Java. It is effective, but the resulting code tends to lose some of its functional flavor. The other method is based on the notion of options. Since the return type of Int.fromString is
string -> int option
it makes the most sense to use the option-based approach.
An int option is either SOME n, where n is and integer, or it is NONE. The function Int.fromString returns the latter if it fails in its attempt to convert the string to an integer. The function which calls Int.fromString can explicitly test for NONE and use the valOf to extract the value in the case that the return value is of the form SOME n. Alternatively, and somewhat more idiomatically, you can use pattern matching in a case expression. Here is a toy example:
fun squareString s =
case Int.fromString(s) of
SOME n => Int.toString (n * n) |
NONE => s ^ " isn't an integer";
This function has type string -> string. Typical output:
- squareString "4";
val it = "16" : string
- squareString "Bob";
val it = "Bob isn't an integer" : string
Note that the clause which starts NONE => is basically an error handler. If the function that you are defining isn't able to handle such errors, it could pass the buck. For example:
fun squareString s =
case Int.fromString(s) of
SOME n => SOME (Int.toString (n * n))|
NONE => NONE;
This has type string -> string option with output now looking like:
- squareString "4";
val it = SOME "16" : string option
- squareString "Bob";
val it = NONE : string option
This would make it the responsibility of the caller to figure out what to do with the option.
The approach to error handling that John explains is elaborated in the StackOverflow question 'Unpacking' the data in an SML DataType without a case statement. The use-case there is a bit different, since it also involves syntax trees, but the same convenience applies for smaller cases:
fun squareString s = Int.fromString s >>= (fn i => SOME (i*i))
Assuming you defined the >>= operator as:
infix 3 >>=
fun NONE >>= _ = NONE
| (SOME a) >>= f = f a
The drawback of using 'a option for error handling is that you have to take into account, every single time you use a function that has this return type, whether it errored. This is not unreasonable. It's like mandatory null-checking. But it comes at the cost of not being able to easily compose your functions (using e.g. the o operator) and a lot of nested case-ofs:
fun inputSqrt s =
case TextIO.inputLine TextIO.stdIn of
NONE => NONE
| SOME s => case Real.fromString s of
NONE => NONE
| SOME x => SOME (Math.sqrt x) handle Domain => NONE
A workaround is that you can build this constant error handling into your function composition operator, as long as all your functions share the same way of expressing errors, e.g. using 'a option:
fun safeSqrt x = SOME (Math.sqrt x) handle Domain => NONE
fun inputSqrt () =
TextIO.inputLine TextIO.stdIn >>=
(fn s => Real.fromString s >>=
(fn x => safeSqrt x))
Or even shorter by applying Eta conversion:
fun inputSqrt () = TextIO.inputLine TextIO.stdIn >>= Real.fromString >>= safeSqrt
This function could fail either because of a lack of input, or because the input didn't convert to a real, or because it was negative. Naturally, this error handling isn't smart enough to say what the error was, so you might want to extend your functions from using an 'a option to using an ('a, 'b) either:
datatype ('a, 'b) either = Left of 'a | Right of 'b
infix 3 >>=
fun (Left msg) >>= _ = Left msg
| (Right a) >>= f = f a
fun try (SOME x) _ = Right x
| try NONE msg = Left msg
fun inputLine () =
try (TextIO.inputLine TextIO.stdIn) "Could not read from stdIn."
fun realFromString s =
try (Real.fromString s) "Could not derive real from string."
fun safeSqrt x =
try (SOME (Math.sqrt x) handle Domain => NONE) "Square root of negative number"
fun inputSqrt () =
inputLine () >>= realFromString >>= safeSqrt
And trying this out:
- ​inputSqrt ();
​9
> val it = Right 3.0 : (string, real) either
- ​inputSqrt ();
​~42
> val it = Left "Square root of negative number" : (string, real) either
- ​inputSqrt ();
Hello
> val it = Left "Could not derive real from string." : (string, real) either
- (TextIO.closeIn TextIO.stdIn; inputSqrt ());
> val it = Left "Could not read from stdIn." : (string, real) either

Should there be an indicesWhere method on Scala's List class?

Scala's List classes have indexWhere methods, which return a single index for a List element which matches the supplied predicate (or -1 if none exists).
I recently found myself wanting to gather all indices in a List which matched a given predicate, and found myself writing an expression like:
list.zipWithIndex.filter({case (elem, _) => p(elem)}).map({case (_, index) => index})
where p here is some predicate function for selecting matching elements. This seems a bit of an unwieldy expression for such a simple requirement (but I may be missing a trick or two).
I was half expecting to find an indicesWhere function on List which would allow me to write instead:
list.indicesWhere(p)
Should something like this be part of the Scala's List API, or is there a much simpler expression than what I've shown above for doing the same thing?
Well, here's a shorter expression that removes some of the syntactic noise you have in yours (modified to use Travis's suggestion):
list.zipWithIndex.collect { case (x, i) if p(x) => i }
Or alternatively:
for ((x,i) <- list.zipWithIndex if p(x)) yield i
But if you use this frequently, you should just add it as an implicit method:
class EnrichedWithIndicesWhere[T, CC[X] <: Seq[X]](xs: CC[T]) {
def indicesWhere(p: T => Boolean)(implicit bf: CanBuildFrom[CC[T], Int, CC[Int]]): CC[Int] = {
val b = bf()
for ((x, i) <- xs.zipWithIndex if p(x)) b += i
b.result
}
}
implicit def enrichWithIndicesWhere[T, CC[X] <: Seq[X]](xs: CC[T]) = new EnrichedWithIndicesWhere(xs)
val list = List(1, 2, 3, 4, 5)
def p(i: Int) = i % 2 == 1
list.indicesWhere(p) // List(0, 2, 4)
You could use unzip to replace the map:
list.zipWithIndex.filter({case (elem, _) => p(elem)}).unzip._2

Can I avoid committing to particular types in a module type and still get pattern matching?

I have two module types:
module type ORDERED =
sig
type t
val eq : t * t -> bool
val lt : t * t -> bool
val leq : t * t -> bool
end
module type STACK =
sig
exception Empty
type 'a t
val empty : 'a t
val isEmpty : 'a t -> bool
val cons : 'a * 'a t -> 'a t
val head : 'a t -> 'a
val tail : 'a t -> 'a t
val length : 'a t -> int
end
I want to write a functor which "lifts" the order relation from the basic ORDERED type to STACKs of that type. That can be done by saying that, for example, two stacks of elements will be equal if all its individual elements are equal. And that stacks s1 and s2 are s.t. s1 < s2 if the first of each of their elements, e1 and e2, are also s.t. e1 < e2, etc.
Now, if don't commit to explicitly defining the type in the module type, I will have to write something like this (or won't I?):
module StackLift (O : ORDERED) (S : STACK) : ORDERED =
struct
type t = O.t S.t
let rec eq (x,y) =
if S.isEmpty x
then if S.isEmpty y
then true
else false
else if S.isEmpty y
then false
else if O.eq (S.head x,S.head y)
then eq (S.tail x, S.tail y)
else false
(* etc for lt and leq *)
end
which is a very clumsy way of doing what pattern matching serves so well. An alternative would be to impose the definition of type STACK.t using explicit constructors, but that would tie my general module somewhat to a particular implementation, which I don't want to do.
Question: can I define something different above so that I can still use pattern matching while at the same time keeping the generality of the module types?
As an alternative or supplement to the other access functions, the module can provide a view function that returns a variant type to use in pattern matching.
type ('a, 's) stack_view = Nil | Cons of 'a * 's
module type STACK =
sig
val view : 'a t -> ('a , 'a t) stack_view
...
end
module StackLift (O : ORDERED) (S : STACK) : ORDERED =
struct
let rec eq (x, y) =
match S.view x, S.view y with
Cons (x, xs), Cons (y, ys) -> O.eq (x, y) && eq (xs, ys)
| Nil, Nil -> true
| _ -> false
...
end
Any stack with a head and tail function can have a view function too, regardless of the underlying data structure.
I believe you've answered your own question. A module type in ocaml is an interface which you cannot look behind. Otherwise, there's no point. You cannot keep the generality of the interface while exposing details of the implementation. The only thing you can use is what's been exposed through the interface.
My answer to your question is yes, there might be something you can do to your definition of stack, that would make the type of a stack a little more complex, thereby making it match a different pattern than just a single value, like (val,val) for instance. However, you've got a fine definition of a stack to work with, and adding more type-fluff is probably a bad idea.
Some suggestions with regards to your definitions:
Rename the following functions: cons => push, head => peek, tail => pop_. I would also add a function val pop : 'a t -> 'a * 'a t, in order to combine head and tail into one function, as well as to mirror cons. Your current naming scheme seems to imply that a list is backing your stack, which is a mental leak of the implementation :D.
Why do eq, lt, and leq take a pair as the first parameter? In constraining the type of eq to be val eq : 'a t * 'a t -> 'a t, you're forcing the programmer that uses your interface to keep around one side of the equality predicate until they've got the other side, before finally applying the function. Unless you have a very good reason, I would use the default curried form of the function, since it provides a little more freedom to the user (val eq : 'a t -> 'a t -> 'a t). The freedom comes in that they can partially apply eq and pass the function around instead of the value and function together.

Is there a way to get a Curried form of the binary operators in SML/NJ?

For example, instead of
- op =;
val it = fn : ''a * ''a -> bool
I would rather have
- op =;
val it = fn : ''a -> ''a -> bool
for use in
val x = getX()
val l = getList()
val l' = if List.exists ((op =) x) l then l else x::l
Obviously I can do this on my own, for example,
val l' = if List.exists (fn y => x = y) l then l else x::l
but I want to make sure I'm not missing a more elegant way.
You could write a helper function that curries a function:
fun curry f x y = f (x, y)
Then you can do something like
val curried_equals = curry (op =)
val l' = if List.exists (curried_equals x) l then l else x::l
My knowledge of SML is scant, but I looked through the Ullman book and couldn't find an easy way to convert a function that accepts a tuple to a curried function. They have two different signatures and aren't directly compatible with one another.
I think you're going to have to roll your own.
Or switch to Haskell.
Edit: I've thought about it, and now know why one isn't the same as the other. In SML, nearly all of the functions you're used to actually accept only one parameter. It just so happens that most of the time you're actually passing it a tuple with more than one element. Still, a tuple is a single value and is treated as such by the function. You can't pass such function a partial tuple. It's either the whole tuple or nothing.
Any function that accepts more than one parameter is, by definition, curried. When you define a function that accepts multiple parameters (as opposed to a single tuple with multiple elements), you can partially apply it and use its return value as the argument to another function.